login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Pell(n) * Sum_{d|n} 1/Pell(d), where Pell(n) = A000129(n).
1

%I #13 Aug 18 2023 05:24:12

%S 1,3,6,19,30,120,170,647,1183,3650,5742,24916,33462,121652,240756,

%T 746639,1136690,4707147,6625110,25882770,46565244,139849776,225058682,

%U 978088748,1356970471,4750318586,9182205852,29333908544,44560482150,188175715440,259717522850,994309609247

%N a(n) = Pell(n) * Sum_{d|n} 1/Pell(d), where Pell(n) = A000129(n).

%F G.f.: Sum_{n>=1} x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)), where A002203 is the companion Pell numbers.

%e G.f.: A(x) = x + 3*x^2 + 6*x^3 + 19*x^4 + 30*x^5 + 120*x^6 + 170*x^7 + ... where A(x) = x/(1-2*x-x^2) + x^2/(1-6*x^2+x^4) + x^3/(1-14*x^3-x^6) + x^4/(1-34*x^4+x^8) + x^5/(1-82*x^5-x^10) + x^6/(1-198*x^6+x^12) + ... + x^n/(1 - A002203(n)*x^n + (-1)^n*x^(2*n)) + ...

%t a[n_] := Fibonacci[n, 2] * DivisorSum[n, 1/Fibonacci[#, 2] &]; Array[a, 32] (* _Amiram Eldar_, Aug 18 2023 *)

%o (PARI) {Pell(n)=polcoeff(x/(1-2*x-x^2+x*O(x^n)),n)}

%o {a(n)=Pell(n) * sumdiv(n, d, 1/Pell(d))}

%o (PARI) /* G.f. using companion Pell numbers: */

%o {A002203(n)=polcoeff(2*(1-x)/(1-2*x-x^2+x*O(x^n)),n)}

%o {a(n)=polcoeff(sum(m=1, n, x^m/(1 - A002203(m)*x^m + (-1)^m*x^(2*m) +x*O(x^n))), n)}

%Y Cf. A204059, A111075, A203802, A000129, A002203.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Jan 13 2012