login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n)=f(a(n-1)+1,a(n-2),a(n-3)), where f(x,y,z)=yz+zx+xy and a(1)=0, a(2)=0, a(3)=1.
11

%I #9 Jan 01 2013 12:01:51

%S 0,0,1,0,1,2,3,14,81,1436,137649,208931366,29059416843159,

%T 6075423684633064285934,176549538697128711514244195056431069,

%U 1072613254042004122844787854494321338954112455109333945016

%N a(n)=f(a(n-1)+1,a(n-2),a(n-3)), where f(x,y,z)=yz+zx+xy and a(1)=0, a(2)=0, a(3)=1.

%C Sequences generated by similar recurrences and same initial values:

%C A203761......f(a(n-1)+1,a(n-2),a(n-3))

%C A203762......f(a(n-1),a(n-2)+1,a(n-3))

%C A203768......f(a(n-1),a(n-2),a(n-3)+1)

%C A203772......f(a(n-1),a(n-2)+1,a(n-3)+1)

%C A203900......f(a(n-1)+1,a(n-2),a(n-3)+1)

%C A203901......f(a(n-1)+1,a(n-2)+1,a(n-3))

%C A203902......f(a(n-1)+1,a(n-2)+1,a(n-3)+1)

%C Related sequences:

%C A121810 ... f(a(n-1),a(n-2),a(n-3)); a=(1,1,0,...). - _M. F. Hasler_, Jan 01 2013

%t a[1] = 0; a[2] = 0; a[3] = 1;

%t a[n_] := SymmetricPolynomial[2, {1 + a[n - 1], a[n - 2], a[n - 3]}]

%t Table[a[n], {n, 1, 16}] (* A203761 *)

%Y Cf. A203902.

%K nonn

%O 1,6

%A _Clark Kimberling_, Jan 07 2012