

A203750


Square root of v(2n)/v(2n1), where v=A203748.


3



1, 14, 741, 87024, 18068505, 5845458528, 2718866959893, 1719570636306432, 1419543579377755377, 1482454643117692608000, 1910657530214126188243749, 2978927846824451394372304896, 5526241720077994999033052180169
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS



LINKS



FORMULA

Define a sequence f(n) by means of the double product f(n) = Product_{1 <= a, b <= n} (a  b*w), where w = exp(2*Pi*i/3) is a primitive cube root of unity. So f(n) is a sort of 2dimensional analog of n!. Then a(n) = f(n)/(f(1)*f(n1)) is the first column of the triangle ( f(n)/(f(k)*f(nk)) ) 0<=k<=n, an analog of Pascal's triangle.  Peter Bala, Sep 21 2013


EXAMPLE

Triangle ( f(n)/(f(k)*f(nk)) ), 0 <= k <= n, begins
1;
1, 1;
1, 14, 1;
1, 741, 741, 1;
1, 87024, 4606056, 87024, 1;


MATHEMATICA



CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



