login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Achilles number whose double is also an Achilles number.
1

%I #36 Sep 10 2024 20:50:59

%S 432,972,1944,2000,2700,3456,4500,5292,5400,5488,8748,9000,10584,

%T 10800,12348,12500,13068,15552,16000,17496,18000,18252,21168,21296,

%U 21600,24300,24500,24696,25000,26136

%N Achilles number whose double is also an Achilles number.

%C Every term is a multiple of 4.

%H Chai Wah Wu, <a href="/A203663/b203663.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..4148 from Robert Israel)

%e 15552 is in the sequence because 15552 = 2^6*3^5 (Achilles number) and 15552*2 = 2^7*3^5 is also an Achilles number.

%p filter:= proc(n) local e2,F;

%p e2:= padic:-ordp(n,2);

%p if e2 < 2 then return false fi;

%p F:= map(t -> t[2], ifactors(n/2^e2)[2]);

%p min(F) > 1 and igcd(e2,op(F))=1 and igcd(e2+1,op(F))=1

%p end proc:

%p select(filter, [seq(i,i=4..10^5,4)]); # _Robert Israel_, Jan 16 2018

%t achillesQ[n_] := With[{ee = FactorInteger[n][[All, 2]]}, Min[ee] > 1 && GCD@@ee == 1];

%t Select[Range[4, 10^5, 4], achillesQ[#] && achillesQ[2#]&] (* _Jean-François Alcover_, Sep 25 2020 *)

%o (PARI) achilles(n) = { n>1 & vecmin(factor(n)[, 2])>1 & !ispower(n) } \\ _M. F. Hasler_, 2010

%o { for (n=1, 10^6, if (achilles(n)==1 && achilles(2*n)==1, print1(n,", "))); } \\ _Antonio Roldán_, Oct 07 2012

%o (Python)

%o # uses program in A052486

%o from itertools import count, islice

%o from math import gcd

%o from sympy import factorint

%o def A203663_gen(): # generator of terms

%o return map(lambda x:x[0],filter(lambda x:all(d>1 for d in x[1]) and gcd(*x[1])==1,map(lambda x: (x,factorint(x<<1).values()),(A052486(i) for i in count(1)))))

%o A203663_list = list(islice(A203663_gen(),30)) # _Chai Wah Wu_, Sep 10 2024

%Y Cf. A052486, A143610, A203662.

%K nonn

%O 1,1

%A _Antonio Roldán_, Jan 04 2012