login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum_{k=0..n} C(k-1,2*k-1-n)*C(k,2*k-n).
4

%I #46 Nov 22 2024 08:31:14

%S 1,1,1,3,7,16,39,95,233,577,1436,3590,9011,22691,57299,145043,367931,

%T 935078,2380405,6068745,15492702,39598631,101323446,259522398,

%U 665332007,1707137941,4383662419,11264675925,28966161253,74530441162,191879611399,494265165151

%N Sum_{k=0..n} C(k-1,2*k-1-n)*C(k,2*k-n).

%C For the connection with Fibonacci meanders classified by maximal run length of 1s see the link.

%C Apparently the number of grand Motzkin paths of length n+1 that avoid UU. - _David Scambler_, Jul 04 2013

%H Michael De Vlieger, <a href="/A203611/b203611.txt">Table of n, a(n) for n = 0..2397</a>

%H Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/2211.04914">Grand Dyck paths with air pockets</a>, arXiv:2211.04914 [math.CO], 2022.

%H Jean-Luc Baril and José L. Ramírez, <a href="http://jl.baril.u-bourgogne.fr/pathwall.pdf">Fibonacci and Catalan paths in a wall</a>, 2023.

%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders">Fibonacci meanders</a>.

%F For n>0 let A=floor(n/2), R=n-1, B=A-R/2+1, C=A+1, D=A-R and Z=(n+1)/2 if n mod 2 = 1, otherwise Z=n^2*(n+2)/16. Then a(n) = Z*Hypergeometric([1,C,C+1,D,D],[B,B,B-1/2,B+1/2],1/16).

%F G.f.: 2*x/((1+x-x^2)*sqrt((x^2+x+1)*(x^2-3*x+1))-x^4+2*x^3+x^2+2*x-1). - _Mark van Hoeij_, May 06 2013

%F a(n) ~ phi^(2*n + 1) / (2 * 5^(1/4) * sqrt(Pi*n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Jun 08 2019

%F a(n) = hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16). - _Peter Luschny_, Mar 24 2023

%F D-finite with recurrence n*a(n) +(-n-1)*a(n-1) +2*(-2*n+5)*a(n-2) +(-n-3)*a(n-3) +3*(n-5)*a(n-5) +(-n+6)*a(n-6)=0. - _R. J. Mathar_, Nov 22 2024

%p a := n -> hypergeom([-n/2, 1 - n/2, (1-n)/2, (1-n)/2], [1, -n, 1 - n], 16):

%p seq(simplify(a(n)), n = 0..31); # _Peter Luschny_, Mar 24 2023

%t a[n_] := Module[{a, r, b, c, d, z}, If[n == 0, Return[1]]; a = Quotient[n, 2]; r = n-1; b = a-r/2+1; c = a+1; d = a-r; z = If[Mod[n, 2] == 1, (n+1)/2, n^2*(n+2)/16]; z*HypergeometricPFQ[{1, c, c+1, d, d}, {b, b, b-1/2, b+1/2}, 1/16] ]; Table[a[n], {n, 0, 31}] (* _Jean-François Alcover_, Jun 27 2013, translated from Maple *)

%t Table[Sum[Binomial[k-1,2k-1-n]Binomial[k,2k-n],{k,0,n}],{n,0,40}] (* _Harvey P. Dale_, May 25 2014 *)

%o (PARI) x='x+O('x^66); Vec( 2*x/((1+x-x^2) * sqrt((x^2+x+1) * (x^2-3*x+1)) -x^4 +2*x^3 +x^2 +2*x -1) ) \\ _Joerg Arndt_, May 06 2013

%Y Cf. A110236, bisection of A202411.

%K nonn

%O 0,4

%A _Peter Luschny_, Jan 14 2012