login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..4 arrays with every nonzero element less than or equal to some NW, E or S neighbor
8

%I #5 Mar 31 2012 12:36:57

%S 1,1,1,1,25,1,1,430,430,1,1,4773,32920,4773,1,1,48046,1525965,1525965,

%T 48046,1,1,504464,67657718,276550270,67657718,504464,1,1,5448482,

%U 3251156731,48904258294,48904258294,3251156731,5448482,1,1,58647145

%N T(n,k)=Number of nXk 0..4 arrays with every nonzero element less than or equal to some NW, E or S neighbor

%C Table starts

%C .1........1.............1..................1.......................1

%C .1.......25...........430...............4773...................48046

%C .1......430.........32920............1525965................67657718

%C .1.....4773.......1525965..........276550270.............48904258294

%C .1....48046......67657718........48904258294..........33466433693229

%C .1...504464....3251156731......9344922234283.......24753202810365029

%C .1..5448482..158110806032...1791660443900385....18555799450636433964

%C .1.58647145.7562825772263.338602574128472532.13763223061933063467070

%H R. H. Hardin, <a href="/A203550/b203550.txt">Table of n, a(n) for n = 1..127</a>

%e Some solutions for n=5 k=3

%e ..0..3..4....3..2..1....3..0..0....4..0..3....3..4..1....4..4..4....1..4..0

%e ..0..3..4....3..2..2....3..4..2....4..3..4....2..4..2....4..2..4....4..4..4

%e ..2..1..4....3..3..4....3..4..2....4..3..4....3..4..3....4..1..0....0..1..1

%e ..2..4..4....3..4..4....2..4..2....4..4..4....4..4..3....4..1..0....3..2..0

%e ..4..4..4....4..4..4....1..4..4....4..4..4....1..4..3....4..4..0....3..3..0

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_ Jan 02 2012