login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = v(n+1)/v(n), where v = A203475.
2

%I #16 Aug 28 2023 03:08:28

%S 5,130,8500,1051076,211255200,62840245000,25959932960000,

%T 14224928867370000,9986120745657472000,8740787543400204500000,

%U 9333385482079885824000000,11942338721669302523305000000,18038821394494464638896640000000

%N a(n) = v(n+1)/v(n), where v = A203475.

%H G. C. Greubel, <a href="/A203476/b203476.txt">Table of n, a(n) for n = 1..200</a>

%F a(n) ~ 2^(n + 1/2) * exp(Pi*(n+1)/2 - 2*n) * n^(2*n). - _Vaclav Kotesovec_, Jan 25 2019

%F a(n) = Product_{j=1..n} ((n+1)^2 + j^2). - _G. C. Greubel_, Aug 28 2023

%t (* First program *)

%t f[j_]:= j^2; z = 15;

%t v[n_]:= Product[Product[f[k] + f[j], {j,k-1}], {k,2,n}]

%t Table[v[n], {n,z}] (* A203475 *)

%t Table[v[n+1]/v[n], {n,z-1}] (* A203476 *)

%t (* Second program *)

%t Table[Product[j^2 +(n+1)^2 , {j,n}], {n,20}] (* _G. C. Greubel_, Aug 28 2023 *)

%o (Magma) [(&*[(n+1)^2 + j^2: j in [1..n]]): n in [1..20]]; // _G. C. Greubel_, Aug 28 2023

%o (SageMath) [product(j^2+(n+1)^2 for j in range(1,n+1)) for n in range(1,21)] # _G. C. Greubel_, Aug 28 2023

%Y Cf. A093883, A110468, A203475.

%K nonn

%O 1,1

%A _Clark Kimberling_, Jan 02 2012