Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 28 2023 01:59:36
%S 1,2,3,15,45,540,3402,96228,1299078,85739148,2507870079,383704122087,
%T 24487299427734,8645900336407620,1209640056157393380,
%U 982320774834892454820,302358334494179897593596,563293577162657149216869348
%N a(n) = A203430(n)/A000178(n) where A000178=(superfactorials).
%H G. C. Greubel, <a href="/A203432/b203432.txt">Table of n, a(n) for n = 1..100</a>
%H R. Chapman, <a href="https://www.maa.org/sites/default/files/Robin_Chapman27238.pdf">A polynomial taking integer values</a>, Mathematics Magazine, 29 (1996), 121.
%t f[j_]:= j + Floor[j/2]; z = 20;
%t v[n_]:= Product[Product[f[k] - f[j], {j,k-1}], {k,2,n}]
%t d[n_]:= Product[(i-1)!, {i,n}]
%t Table[v[n], {n,z}] (* A203430 *)
%t Table[v[n+1]/v[n], {n,z}] (* A203431 *)
%t Table[v[n]/d[n], {n,z}] (* this sequence *)
%o (Magma)
%o Barnes:= func< n | (&*[Factorial(j): j in [1..n-1]]) >;
%o A203432:= func< n | n eq 1 select 1 else (&*[(&*[k-j+Floor((k+1)/2)-Floor((j+1)/2): j in [0..k-1]]) : k in [1..n-1]])/Barnes(n) >;
%o [A203432(n): n in [1..25]]; // _G. C. Greubel_, Sep 20 2023
%o (SageMath)
%o def barnes(n): return product(factorial(j) for j in range(n))
%o def A203432(n): return product(product(k-j+((k+1)//2)-((j+1)//2) for j in range(k)) for k in range(1,n))/barnes(n)
%o [A203432(n) for n in range(1,31)] # _G. C. Greubel_, Sep 20 2023
%Y Cf. A000178, A032766, A203430, A203431.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 02 2012