Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:36:56
%S 1,7,49,252,1519,11585,86156,606221,4325033,31601858,230910283,
%T 1678821743,12222650420,89226320509,651653318187,4758063707123,
%U 34749854417031,253886944760666,1855215535222434,13557207303083137
%N Number of nX2 0..6 arrays with every nonzero element less than or equal to at least two horizontal and vertical neighbors
%C Column 2 of A203389
%H R. H. Hardin, <a href="/A203383/b203383.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 28*a(n-1) -357*a(n-2) +2947*a(n-3) -18592*a(n-4) +94955*a(n-5) -401184*a(n-6) +1451988*a(n-7) -4590176*a(n-8) +12768384*a(n-9) -31951051*a(n-10) +72039820*a(n-11) -147425146*a(n-12) +278988578*a(n-13) -478122096*a(n-14) +772651010*a(n-15) -1140165206*a(n-16) +1561997938*a(n-17) -2078573014*a(n-18) +2309819561*a(n-19) -2991164305*a(n-20) +2465714727*a(n-21) -3427669017*a(n-22) +1906150182*a(n-23) -2939880630*a(n-24) +1350797248*a(n-25) -1313333555*a(n-26) +1690232897*a(n-27) +1046282076*a(n-28) +2849146517*a(n-29) +3075606987*a(n-30) +3774538533*a(n-31) +3807731593*a(n-32) +3631581833*a(n-33) +3191721534*a(n-34) +2593241832*a(n-35) +1979588333*a(n-36) +1403683196*a(n-37) +935210902*a(n-38) +582152845*a(n-39) +339405509*a(n-40) +185220493*a(n-41) +94342890*a(n-42) +44863967*a(n-43) +19830162*a(n-44) +8128055*a(n-45) +3075933*a(n-46) +1067442*a(n-47) +337750*a(n-48) +96306*a(n-49) +24424*a(n-50) +5412*a(n-51) +1012*a(n-52) +153*a(n-53) +17*a(n-54) +a(n-55)
%e Some solutions for n=4
%e ..6..6....0..0....1..1....3..3....0..0....2..2....5..5....6..6....4..4....4..4
%e ..6..6....1..1....5..5....3..3....6..6....2..2....5..5....6..6....4..4....4..4
%e ..5..5....1..1....5..5....3..3....6..6....3..3....5..5....5..5....6..6....1..1
%e ..1..1....0..0....5..5....1..1....1..1....3..3....5..5....0..0....6..6....1..1
%K nonn
%O 1,2
%A _R. H. Hardin_ Jan 01 2012