login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k)*x^(n*k)/k ).
5

%I #9 Dec 25 2023 18:20:04

%S 1,3,7,19,26,75,78,211,241,518,463,1447,1002,2558,2612,5715,3928,

%T 11901,7316,21574,17031,35159,23047,80575,40951,108488,86911,206638,

%U 107823,370220,173725,570803,372181,816496,451883,1723741,665150,2048982,1404150,3705366,1530859,5892479

%N L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * exp( Sum_{k>=1} sigma(n*k)*x^(n*k)/k ).

%H Paul D. Hanna, <a href="/A203321/b203321.txt">Table of n, a(n) for n = 1..120</a>

%F L.g.f.: Sum_{n>=1} a(n)*x^n/n = Sum_{n>=1} x^n/n * P_n(x^n) where P_n(x^n) = Product_{k=0..n-1} P(u^k*x) where u is an n-th root of unity, and P(x) is the partition function (A000041); P(x) = exp(Sum_{n>=1} sigma(n)*x^n/n) where sigma(n) is the sum of divisors of n (A000203).

%e L.g.f.: L(x) = x + 3*x^2/2 + 7*x^3/3 + 19*x^4/4 + 26*x^5/5 + 75*x^6/6 +...

%e where

%e L(x) = x*exp(1*x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 +...) +

%e x^2/2*exp(3*x^2 + 7*x^4/2 + 12*x^6/3 + 15*x^8/4 + 18*x^10/5 +...) +

%e x^3/3*exp(4*x^3 + 12*x^6/2 + 13*x^9/3 + 28*x^12/4 + 24*x^15/5 +...) +

%e x^4/4*exp(7*x^4 + 15*x^8/2 + 28*x^12/3 + 31*x^16/4 + 42*x^20/5 +...) +

%e x^5/5*exp(6*x^5 + 18*x^10/2 + 24*x^15/3 + 42*x^20/4 + 31*x^25/5 +...) +

%e x^6/6*exp(12*x^6 + 28*x^12/2 + 39*x^18/3 + 60*x^24/4 + 72*x^30/5 +...) +

%e x^7/7*exp(8*x^7 + 24*x^14/2 + 32*x^21/3 + 56*x^28/4 + 48*x^35/5 +...) +

%e x^8/8*exp(15*x^8 + 31*x^16/2 + 60*x^24/3 + 63*x^32/4 + 90*x^40/5 +...) +...

%e ...

%e Equivalently, L(x) = Sum_{n>=1} P_n(x^n) * x^n/n where

%e P_n(x) = exp( Sum_{k>=1} sigma(n*k)*x^k/k ), which begin:

%e P_1(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + 11*x^6 + 15*x^7 +...;

%e P_2(x) = 1 + 3*x + 8*x^2 + 19*x^3 + 41*x^4 + 83*x^5 + 161*x^6 +...;

%e P_3(x) = 1 + 4*x + 14*x^2 + 39*x^3 + 101*x^4 + 238*x^5 + 533*x^6 +...;

%e P_4(x) = 1 + 7*x + 32*x^2 + 119*x^3 + 385*x^4 + 1127*x^5 + 3057*x^6 +...;

%e P_5(x) = 1 + 6*x + 27*x^2 + 98*x^3 + 315*x^4 + 917*x^5 + 2486*x^6 +...;

%e P_6(x) = 1 + 12*x + 86*x^2 + 469*x^3 + 2141*x^4 + 8594*x^5 +...;

%e P_7(x) = 1 + 8*x + 44*x^2 + 192*x^3 + 726*x^4 + 2464*x^5 +...;

%e P_8(x) = 1 + 15*x + 128*x^2 + 815*x^3 + 4289*x^4 + 19663*x^5 +...;

%e ...

%o (PARI) {a(n)=local(L=vector(max(n,1), i, 1)); L=Vec(deriv(sum(m=1, n, x^m/m*exp(sum(k=1, floor(n/m), sigma(m*k)*x^(m*k)/k)+x*O(x^n))))); if(n<1,0,L[n])}

%o (PARI) {a(n)=local(A=1+x+x*O(x^n),P=exp(sum(k=1,n,sigma(k)*x^k/k)+x*O(x^n))); A=exp(sum(m=1, n+1, x^m/m*round(prod(k=0, m-1, subst(P, x, exp(2*Pi*I*k/m)*x+x*O(x^n)))))); n*polcoeff(log(A), n)}

%Y Cf. A203320; A000041, A182818, A182819, A182820, A182821.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Dec 31 2011