Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Nov 22 2023 09:44:06
%S 1,3,147,298116,47460365316,965460013501733568,
%T 3717096745012192786213464768,
%U 3763515081241454304168766426610670649344,1329626784930718063722475681347135527472012731205697536
%N Vandermonde sequence using x^2 - xy + y^2 applied to (1,2,...,n).
%C See A093883 for a discussion and guide to related sequences.
%F a(n) ~ c * n^(n^2 - n - 2/3) / exp(3*n^2/2 - n*(n+1)*Pi/(2*sqrt(3)) - n), where c = Gamma(1/3) * 3^(1/12) * exp(Pi/(12*sqrt(3))) / (2^(4/3) * Pi^(4/3)) = 0.2945280196744096322469352538791946777977998766871923997662057483092872... - _Vaclav Kotesovec_, Nov 22 2023
%t f[j_] := j; z = 12;
%t v[n_] := Product[Product[f[j]^2 - f[j] f[k] + f[k]^2,
%t {j, 1, k - 1}], {k, 2, n}]
%t Table[v[n], {n, 1, z}] (* A203312 *)
%t Table[v[n + 1]/v[n], {n, 1, z}] (* A203513 *)
%o (Python)
%o from operator import mul
%o from functools import reduce
%o def v(n): return 1 if n==1 else reduce(mul, [j**2 - j*k + k**2 for k in range(2, n + 1) for j in range(1, k)])
%o print([v(n) for n in range(1, 11)]) # _Indranil Ghosh_, Jul 26 2017
%Y Cf. A203012, A203673, A367543.
%K nonn
%O 1,2
%A _Clark Kimberling_, Jan 04 2012