login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of 12 nondecreasing integers in -n..n with sum zero and equal numbers greater than zero and less than zero
1

%I #5 Mar 31 2012 12:36:56

%S 7,28,176,944,4206,15798,51768,151393,403131,991692,2280620,4948566,

%T 10208256,20143302,38215998,70007951,124283183,214475760,360744276,

%U 592751998,953388836,1503671490,2329136950,3548069499,5322005825

%N Number of arrays of 12 nondecreasing integers in -n..n with sum zero and equal numbers greater than zero and less than zero

%C Row 6 of A203291

%H R. H. Hardin, <a href="/A203296/b203296.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 3*a(n-1) -a(n-2) -3*a(n-3) +a(n-4) -a(n-5) +3*a(n-6) -a(n-7) +5*a(n-8) -a(n-9) -6*a(n-10) -2*a(n-11) -a(n-12) +a(n-13) +a(n-14) +13*a(n-15) -4*a(n-16) -2*a(n-17) -4*a(n-18) -4*a(n-19) -2*a(n-20) -4*a(n-21) +13*a(n-22) +a(n-23) +a(n-24) -a(n-25) -2*a(n-26) -6*a(n-27) -a(n-28) +5*a(n-29) -a(n-30) +3*a(n-31) -a(n-32) +a(n-33) -3*a(n-34) -a(n-35) +3*a(n-36) -a(n-37)

%e Some solutions for n=3

%e .-3...-3...-2...-3...-3...-3...-3...-3...-2...-3...-3...-3...-3...-3...-2...-3

%e .-1...-3...-2...-3...-3...-3...-3...-3...-1...-1...-3...-3...-3...-3...-2...-3

%e .-1...-3...-2...-3...-1...-3...-3...-1...-1...-1....0...-2...-3...-3...-1...-2

%e .-1...-1...-2...-1...-1...-1...-1...-1...-1...-1....0...-2...-3...-1...-1...-1

%e ..0...-1...-2...-1...-1...-1...-1....0...-1...-1....0...-1...-1....0...-1...-1

%e ..0...-1...-1....0....0....0....0....0....0...-1....0...-1...-1....0...-1....0

%e ..0....2....1....0....0....0....0....0....0....1....0....1....1....0....1....0

%e ..0....2....2....1....1....1....2....0....1....1....0....2....1....0....1....2

%e ..1....2....2....1....2....2....2....2....1....1....0....2....3....2....1....2

%e ..1....2....2....3....2....2....2....2....1....1....0....2....3....2....1....2

%e ..2....2....2....3....2....3....2....2....1....2....3....2....3....3....1....2

%e ..2....2....2....3....2....3....3....2....2....2....3....3....3....3....3....2

%K nonn

%O 1,1

%A _R. H. Hardin_ Dec 31 2011