login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of arrays of 2n nondecreasing integers in -4..4 with sum zero and equal numbers greater than zero and less than zero.
1

%I #8 Jun 04 2018 03:35:56

%S 5,21,69,188,444,944,1844,3369,5825,9621,15285,23492,35080,51084,

%T 72756,101601,139401,188257,250613,329304,427584,549176,698304,879749,

%U 1098881,1361721,1674977,2046108,2483364,2995856,3593596,4287573,5089797,6013377

%N Number of arrays of 2n nondecreasing integers in -4..4 with sum zero and equal numbers greater than zero and less than zero.

%C Column 4 of A203291.

%H R. H. Hardin, <a href="/A203287/b203287.txt">Table of n, a(n) for n = 1..189</a>

%F Empirical: a(n) = 4*a(n-1) -4*a(n-2) -3*a(n-3) +6*a(n-4) -6*a(n-7) +3*a(n-8) +4*a(n-9) -4*a(n-10) +a(n-11).

%F Empirical g.f.: x*(5 + x + 5*x^2 + 11*x^3 + x^4 + x^5 - 6*x^6 + 3*x^7 + 4*x^8 - 4*x^9 + x^10) / ((1 - x)^7*(1 + x)^2*(1 + x + x^2)). - _Colin Barker_, Jun 04 2018

%e Some solutions for n=3:

%e .-3...-1...-3...-3...-3...-3...-3...-4...-3...-4...-4...-3...-2...-4...-4...-4

%e .-3...-1...-2...-3...-2...-3...-3...-1...-2....0...-2...-1....0...-2...-2...-4

%e .-1...-1....0...-2...-1...-1...-1...-1....0....0...-1...-1....0...-2...-1...-1

%e ..1....1....0....1....1....1....2....1....0....0....1....1....0....2....2....3

%e ..3....1....2....3....1....2....2....2....1....0....2....2....0....3....2....3

%e ..3....1....3....4....4....4....3....3....4....4....4....2....2....3....3....3

%Y Cf. A203291.

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 31 2011