login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Second elementary symmetric function of the first n terms of (1,2,4,8,...).
4

%I #21 Mar 22 2018 09:49:35

%S 2,14,70,310,1302,5334,21590,86870,348502,1396054,5588310,22361430,

%T 89462102,357881174,1431590230,5726491990,22906230102,91625444694,

%U 366502827350,1466013406550,5864057820502,23456239670614,93824975459670

%N Second elementary symmetric function of the first n terms of (1,2,4,8,...).

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).

%F a(n) = 2*A006095(n).

%F From _Colin Barker_, Aug 15 2014: (Start)

%F a(n) = (2 - 3*2^n + 4^n)/3.

%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3).

%F G.f.: -2*x^2 / ((x-1)*(2*x-1)*(4*x-1)). (End)

%F a(n) = Sum_{k=0...n-2} 2^k*(2^(n-1)-1+2^k). - _J. M. Bergot_, Mar 21 2018

%t f[k_] := 2^(k - 1); t[n_] := Table[f[k], {k, 1, n}]

%t a[n_] := SymmetricPolynomial[2, t[n]]

%t Table[a[n], {n, 2, 32}] (* A203241 *)

%t Table[a[n]/2, {n, 2, 32}] (* A006095 *)

%o (PARI) Vec(-2*x^2 / ((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ _Colin Barker_, Aug 15 2014

%Y Cf. A006095.

%K nonn,easy

%O 2,1

%A _Clark Kimberling_, Dec 31 2011