login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=1; for n > 0, a(n) = next prime after 2^(n-1).
6

%I #57 Jun 11 2023 23:29:10

%S 1,2,3,5,11,17,37,67,131,257,521,1031,2053,4099,8209,16411,32771,

%T 65537,131101,262147,524309,1048583,2097169,4194319,8388617,16777259,

%U 33554467,67108879,134217757,268435459,536870923,1073741827,2147483659

%N a(0)=1; for n > 0, a(n) = next prime after 2^(n-1).

%C Equals {1} union A014210. Unlike A014210, every positive integer can be written in one or more ways as a sum of terms of this sequence. See A203075, A203076.

%H M. F. Hasler & Bill McEachen, <a href="/A203074/b203074.txt">Table of n, a(n) for n = 0..1300</a> (missing lines n = 1159..1165 from Bill McEachen)

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Complete_sequence">"Complete" sequence</a>. [Wikipedia calls a sequence "complete" (sic) if every positive integer is a sum of distinct terms. This name is extremely misleading and should be avoided. - _N. J. A. Sloane_, May 20 2023]

%F A203074(n) = 2^(n-1) + A013597(n-1), for n > 0. - _M. F. Hasler_, Mar 15 2012

%F a(n) = A104080(n-1) for n > 2. - _Georg Fischer_, Oct 23 2018

%e a(5) = 17, since this is the next prime after 2^(5-1) = 2^4 = 16.

%t nextprime[n_Integer] := (k=n+1;While[!PrimeQ[k], k++];k); aprime[m_Integer] := (If[m==0, 1, nextprime[2^(m-1)]]); Table[aprime[l], {l,0,100}]

%t nxt[{n_,a_}]:={n+1,NextPrime[2^n]}; NestList[nxt,{0,1},40][[All,2]] (* _Harvey P. Dale_, Oct 10 2017 *)

%o (PARI) a(n)=if(n,nextprime(2^n/2+1),1) \\ _Charles R Greathouse IV_

%o (PARI) A203074(n)=nextprime(2^(n-1)+1)-!n \\ _M. F. Hasler_, Mar 15 2012

%o (Magma) [1] cat [NextPrime(2^(n-1)): n in [1..40]]; // _Vincenzo Librandi_, Feb 23 2018

%Y Cf. A013632, A013597, A014210, A104080, A203075, A203076.

%K nonn

%O 0,2

%A _Frank M Jackson_ and _N. J. A. Sloane_, Dec 28 2011.