login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Least prime q such that prime(n)^2 - q^2 - 1 and prime(n)^2 - q^2 + 1 are twin primes or 0 if no solution.
1

%I #11 May 13 2013 01:50:01

%S 0,0,0,0,7,0,7,7,17,23,19,7,19,19,11,11,11,7,19,37,7,19,23,19,13,31,

%T 29,17,7,23,29,23,59,113,19,23,31,151,19,7,23,37,73,7,19,19,41,19,7,

%U 31,53,41,17,43,11,17,59,73,19,173,23,47,19,53,11,31,19,23

%N Least prime q such that prime(n)^2 - q^2 - 1 and prime(n)^2 - q^2 + 1 are twin primes or 0 if no solution.

%C Conjecture: a(n) > 0 for n > 6.

%C Conjecture: With Sq=sum of q for n=1 to N and Sp=sum of p(n) for n=1 to N, lim sup Sq/Sp = 0.

%H Pierre CAMI, <a href="/A202996/b202996.txt">Table of n, a(n) for n = 1..10000</a>

%e No solution for n=1 to 4 prime(n) = 2, 3, 5, 7.

%e For prime(5)=11, 11^2-7^2-1 = 71, 71 and 73 twin primes so q(5)=7.

%e No solution for prime(6)=13

%e For prime(7)=17, 17^2-7^2-1=239, 239 and 241 twin primes so q(7)=7.

%o (PARI) a(n)=my(p=prime(n));forprime(q=2,p-1,if(isprime(p^2-q^2-1)&&isprime(p^2-q^2+1),return(q)));0 \\ _Charles R Greathouse IV_, Dec 27 2011

%K nonn

%O 1,5

%A _Pierre CAMI_, Dec 27 2011