login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..1 arrays with every one equal to some NW, E or S neighbor.
1

%I #12 Jul 19 2023 15:20:25

%S 1,40,494,4892,51068,538672,5654616,59369072,623600944,6549786560,

%T 68792261728,722531010240,7588808329152,79705877679872,

%U 837157507203456,8792735883863808,92350844763980544,969968692011129856

%N Number of nX4 0..1 arrays with every one equal to some NW, E or S neighbor.

%H R. H. Hardin, <a href="/A202902/b202902.txt">Table of n, a(n) for n = 1..210</a>

%H Robert Israel, <a href="/A202902/a202902.pdf">Maple-assisted proof of formula</a>

%F Empirical: a(n) = 16*a(n-1) -76*a(n-2) +272*a(n-3) -1060*a(n-4) +2704*a(n-5) -5184*a(n-6) +9920*a(n-7) -11904*a(n-8) +9472*a(n-9) -7168*a(n-10) +4096*a(n-11) -1024*a(n-12).

%F Empirical formula verified by _Robert Israel_, May 09 2018 (see link).

%e Some solutions for n=5

%e ..1..1..1..0....1..0..1..1....0..0..0..0....1..0..0..0....0..1..1..1

%e ..0..1..1..0....1..0..1..1....0..1..1..0....1..1..1..0....1..1..0..1

%e ..0..1..1..1....1..0..1..0....1..0..1..0....1..1..1..0....0..1..1..1

%e ..1..0..1..1....1..1..1..1....1..0..0..0....0..1..0..0....1..1..0..1

%e ..1..1..0..0....0..1..0..0....1..1..0..0....1..1..1..0....0..1..0..0

%p f:= gfun:-rectoproc({a(n) = 16*a(n-1) -76*a(n-2) +272*a(n-3) -1060*a(n-4) +2704*a(n-5) -5184*a(n-6) +9920*a(n-7) -11904*a(n-8) +9472*a(n-9) -7168*a(n-10) +4096*a(n-11) -1024*a(n-12),seq(a(i)=[1, 40, 494, 4892, 51068, 538672, 5654616, 59369072, 623600944, 6549786560, 68792261728, 722531010240][i],i=1..12)},a(n),remember):

%p map(f, [$1..25]); # _Robert Israel_, May 09 2018

%Y Column 4 of A202906.

%K nonn

%O 1,2

%A _R. H. Hardin_, Dec 25 2011