login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A115216; by antidiagonals.
3

%I #13 Oct 02 2017 09:58:11

%S 1,-1,1,-6,1,1,-11,27,-1,1,-16,78,-112,1,1,-21,154,-458,453,-1,1,-26,

%T 255,-1164,2431,-1818,1,1,-31,381,-2355,7635,-12141,7279,-1,1,-36,532,

%U -4156,18390,-45660,58260,-29124,1,1,-41,708,-6692,37646,-128190

%N Array: row n shows the coefficients of the characteristic polynomial of the n-th principal submatrix of the symmetric matrix A115216; by antidiagonals.

%C Let p(n)=p(n,x) be the characteristic polynomial of the n-th principal submatrix. The zeros of p(n) are positive, and they interlace the zeros of p(n+1).

%H S.-G. Hwang, <a href="http://matrix.skku.ac.kr/Series-E/Monthly-E.pdf">Cauchy's interlace theorem for eigenvalues of Hermitian matrices</a>, American Mathematical Monthly 111 (2004) 157-159.

%H A. Mercer and P. Mercer, <a href="http://dx.doi.org/10.1155/S016117120000257X">Cauchy's interlace theorem and lower bounds for the spectral radius</a>, International Journal of Mathematics and Mathematical Sciences 23, no. 8 (2000) 563-566.

%e The 1st principal submatrix (ps) of A115216 is {{1}} (using Mathematica matrix notation), with p(1)=1-x and zero-set {1}.

%e ...

%e The 2nd ps is {{1,2},{2,5}}, with p(2)=1-6x+x^2 and zero-set {0.171..., 5.828...}.

%e ...

%e The 3rd ps is {{1,2,4},{2,5,10},{4,10,21}}, with p(3)=1-30x+57x^2-x^3 and zero-set {0.136..., 0.276..., 2.587...}.

%e ...

%e Top of the array:

%e 1...-1

%e 1...-6....1

%e 1...-11...27...-1

%e 1...-16...78...-112...1

%t f[k_] := 2^(k - 1);

%t U[n_] := NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[f[k], {k, 1, n}]];

%t L[n_] := Transpose[U[n]];

%t F[n_] := CharacteristicPolynomial[L[n].U[n], x];

%t c[n_] := CoefficientList[F[n], x]

%t TableForm[Flatten[Table[F[n], {n, 1, 10}]]]

%t Table[c[n], {n, 1, 12}]

%t Flatten[%] (* A202868 sequence *)

%t TableForm[Table[c[n], {n, 1, 10}]] (* A202868 array *)

%t Table[(F[k] /. x -> -1), {k, 1, 30}] (* A154626 *)

%t Table[(F[k] /. x -> 1), {k, 1, 30}] (* A058922 *)

%Y Cf. A115216, A202605.

%K tabl,sign

%O 1,4

%A _Clark Kimberling_, Dec 26 2011