login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of secondary structures of size n having no stacks of length 1.
6

%I #11 Jul 26 2022 16:04:46

%S 1,1,1,1,1,2,4,8,14,23,38,65,117,214,391,708,1278,2318,4238,7803,

%T 14419,26684,49433,91736,170656,318280,594905,1113868,2088554,3921505,

%U 7373367,13883045,26174600,49408932,93372078,176637791,334491586,634023965,1202894908,2284187117

%N Number of secondary structures of size n having no stacks of length 1.

%C For "secondary structure" and "stack" see the Hofacker et al. reference, p. 209.

%C a(n) = A202838(n,0).

%H I. L. Hofacker, P. Schuster and P. F. Stadler, <a href="https://doi.org/10.1016/S0166-218X(98)00073-0">Combinatorics of RNA secondary structures</a>, Discrete Appl. Math., 88, 1998, 207-237.

%H P. R. Stein and M. S. Waterman, <a href="https://doi.org/10.1016/0012-365X(79)90033-5">On some new sequences generalizing the Catalan and Motzkin numbers</a>, Discrete Math., 26 (1979), 261-272.

%F G.f. G=G(z) satisfies G = 1+zG +fG(G-1)/(1+f), where f = z^4/(1-z^2).

%F D-finite with recurrence +(n+4)*a(n) +(-2*n-5)*a(n-1) +(-n-1)*a(n-2) +2*(2*n-1)*a(n-3) +(-n+2)*a(n-4) +4*(-2*n+7)*a(n-5) +3*(n-5)*a(n-6) +3*(2*n-13)*a(n-7) +2*(-n+8)*a(n-8) +2*(-2*n+19)*a(n-9) +(n-11)*a(n-10)=0. - _R. J. Mathar_, Jul 26 2022

%e a(5)=2; representing unpaired vertices by v and arcs by AA, BB, etc., the 8 (= A004148(5)) secondary structures of size 5 are vvvvv, AvAvv, vvAvA, AvvAv, vAvvA, AvvvA, vAvAv, ABvBA; they have 0,1,1,1,1,1,1,0 stacks of length 1, respectively.

%p f := z^4/(1-z^2): eq := G = 1+z*G+f*G*(G-1)/(1+f): G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 42)): seq(coeff(Gser, z, n), n = 0 .. 39);

%Y Cf. A202838, A202839, A202841, A202842, A202843, A202844

%K nonn

%O 0,6

%A _Emeric Deutsch_, Dec 25 2011