The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202710 Triangle read by rows. T(n, k) = coefficient of x^n in the Taylor expansion of [((1 - x - 2*x^2 - sqrt(1 - 2*x - 3*x^2))/(2*x^2))]^k. 1
 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1, 323, 707, 825, 604, 285, 84, 14, 1, 835, 1940, 2488, 2084, 1185, 454, 112, 16, 1, 2188, 5337, 7389, 6890, 4527, 2106, 679, 144, 18, 1, 5798, 14728, 21726, 22120, 16325, 8838, 3479, 968, 180, 20, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Triangle T(n,k)= 1. Riordan Array (1,((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) without first column. 2. Riordan Array (((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x)),((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) numbering triangle (0,0). 3. The leftmost column contains the Motzkin numbers A001006 without a(0). The convolution triangle of the Motzkin numbers. - Peter Luschny, Oct 07 2022 LINKS Table of n, a(n) for n=1..66. FORMULA T(n,k) = Sum_{i=1..k} (i*(-1)^(k-i)*binomial(k,i)*Sum_{j=floor(n/2)..n} binomial(j+i,-n+2*j)*binomial(n+i,j+i)))/(n+i)). T(n,k) = k*Sum_{i=0..n-k} binomial(k+i,n-k-i)*binomial(n,i)/(k+i). - Vladimir Kruchinin, Dec 09 2016 EXAMPLE 1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1 MAPLE # Uses function PMatrix from A357368. Adds a row and a column for n, k = 0. PMatrix(10, n -> simplify(hypergeom([(1-n)/2, -n/2], [2], 4))); # Peter Luschny, Oct 06 2022 MATHEMATICA T[n_, k_] := Binomial[n - 1, n - k] + k*Sum[Binomial[n, i]*Binomial[k + i, n - k - i]/(k + i), {i, 0, n - k - 1}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2016, after Vladimir Kruchinin *) PROG (Maxima) T(n, k):=sum((i*(-1)^(k-i)*binomial(k, i)*sum(binomial(j+i, -n+2*j)*binomial(n+i, j+i) , j, floor(n/2), n))/(n+i), i, 1, k); (Maxima) T(n, k):=+binomial(n-1, n-k)+k*sum((binomial(n, i)*binomial(k+i, n-k-i))/(k+i), i, 0, n-k-1); /* Vladimir Kruchinin, Dec 06 2016*/ CROSSREFS Cf. A001006. Sequence in context: A113988 A209240 A263989 * A200965 A117427 A097761 Adjacent sequences: A202707 A202708 A202709 * A202711 A202712 A202713 KEYWORD nonn,tabl AUTHOR Vladimir Kruchinin, Dec 23 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 25 15:00 EDT 2023. Contains 365648 sequences. (Running on oeis4.)