login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202710
Triangle read by rows. T(n, k) = coefficient of x^n in the Taylor expansion of [((1 - x - 2*x^2 - sqrt(1 - 2*x - 3*x^2))/(2*x^2))]^k.
1
1, 2, 1, 4, 4, 1, 9, 12, 6, 1, 21, 34, 24, 8, 1, 51, 94, 83, 40, 10, 1, 127, 258, 267, 164, 60, 12, 1, 323, 707, 825, 604, 285, 84, 14, 1, 835, 1940, 2488, 2084, 1185, 454, 112, 16, 1, 2188, 5337, 7389, 6890, 4527, 2106, 679, 144, 18, 1, 5798, 14728, 21726, 22120, 16325, 8838, 3479, 968, 180, 20, 1
OFFSET
1,2
COMMENTS
Triangle T(n,k)=
1. Riordan Array (1,((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) without first column.
2. Riordan Array (((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x)),((1-x-2*x^2-sqrt(1-2*x-3*x^2))/(2*x^2))) numbering triangle (0,0).
3. The leftmost column contains the Motzkin numbers A001006 without a(0).
The convolution triangle of the Motzkin numbers. - Peter Luschny, Oct 07 2022
FORMULA
T(n,k) = Sum_{i=1..k} (i*(-1)^(k-i)*binomial(k,i)*Sum_{j=floor(n/2)..n} binomial(j+i,-n+2*j)*binomial(n+i,j+i))/(n+i).
T(n,k) = k*Sum_{i=0..n-k} binomial(k+i,n-k-i)*binomial(n,i)/(k+i). - Vladimir Kruchinin, Dec 09 2016
EXAMPLE
Triangle begins:
1,
2, 1,
4, 4, 1,
9, 12, 6, 1,
21, 34, 24, 8, 1,
51, 94, 83, 40, 10, 1,
127, 258, 267, 164, 60, 12, 1
MAPLE
# Uses function PMatrix from A357368. Adds a row and a column for n, k = 0.
PMatrix(10, n -> simplify(hypergeom([(1-n)/2, -n/2], [2], 4))); # Peter Luschny, Oct 06 2022
MATHEMATICA
T[n_, k_] := Binomial[n - 1, n - k] + k*Sum[Binomial[n, i]*Binomial[k + i, n - k - i]/(k + i), {i, 0, n - k - 1}]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Dec 06 2016, after Vladimir Kruchinin *)
PROG
(Maxima) T(n, k):=sum((i*(-1)^(k-i)*binomial(k, i)*sum(binomial(j+i, -n+2*j)*binomial(n+i, j+i) , j, floor(n/2), n))/(n+i), i, 1, k);
(Maxima)
T(n, k):=+binomial(n-1, n-k)+k*sum((binomial(n, i)*binomial(k+i, n-k-i))/(k+i), i, 0, n-k-1); /* Vladimir Kruchinin, Dec 06 2016*/
CROSSREFS
Cf. A001006.
Sequence in context: A113988 A209240 A263989 * A200965 A117427 A097761
KEYWORD
nonn,tabl
AUTHOR
Vladimir Kruchinin, Dec 23 2011
STATUS
approved