login
A202563
Numbers which are both decagonal and pentagonal.
3
1, 12376, 118837251, 1141075274626, 10956604668124501, 105205316882256186876, 1010181441746819238261751, 9699762098447641443533149126, 93137114659112811393986059649001, 894302565257039116557412701216561376, 8587093138460974938071465363095362686251
OFFSET
1,2
COMMENTS
As n increases, this sequence is approximately geometric with common ratio r = lim(n->Infinity, a(n)/a(n-1)) = (sqrt(3)+sqrt(2))^8 = 4801+1960*sqrt(6).
Intersection of A000326 and A001107. - Michel Marcus, Jun 20 2015
FORMULA
G.f.: x*(1+2773*x+126*x^2) / ((1-x)*(1-9602*x+x^2)).
a(n) = 9602*a(n-1)-a(n-2)+2900.
a(n) = 9603*a(n-1)-9603*a(n-2)+a(n-3).
a(n) = 1/192*(25*((sqrt(3)+sqrt(2))^(8*n-6)+(sqrt(3)-sqrt(2))^(8*n-6))-58).
a(n) = floor(25/192*(sqrt(3)+sqrt(2))^(8*n-6)).
EXAMPLE
The second natural number which is both pentagonal and decagonal is 12376. Hence a(2) = 12376.
MATHEMATICA
LinearRecurrence[{9603, -9603, 1}, {1, 12376, 118837251}, 11]
PROG
(Maxima) makelist(expand((25*((sqrt(3)+sqrt(2))^(8*n-6)+(sqrt(3)-sqrt(2))^(8*n-6))-58)/192), n, 1, 11); /* Bruno Berselli, Dec 22 2011 */
(Magma) I:=[1, 12376, 118837251]; [n le 3 select I[n] else 9603*Self(n-1)-9603*Self(n-2)+1*Self(n-3): n in [1..15]]; // Vincenzo Librandi, Jan 24 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ant King, Dec 21 2011
STATUS
approved