login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of tilings of a 4 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.
3

%I #17 Aug 20 2024 09:40:39

%S 1,0,1,3,3,8,21,31,70,165,286,615,1351,2548,5353,11343,22320,46349,

%T 96516,193944,400313,826747,1678540,3453642,7105102,14498569,29781633,

%U 61158957,125108639,256763850,526846289,1079030715,2213527089,4540131569,9304062828

%N Number of tilings of a 4 X n rectangle using straight (3 X 1) trominoes and 2 X 2 tiles.

%H Alois P. Heinz, <a href="/A202536/b202536.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_30">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, 11, -9, -8, -48, 29, 23, 115, -44, -31, -173, 35, 19, 174, -18, 2, -119, 10, -14, 56, -8, 12, -19, 4, -5, 5, -1, 1, -1).

%F G.f.: see Maple program.

%e a(3) = 3, because there are 3 tilings of a 4 X 3 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:

%e ._____. ._____. ._._._.

%e | | | | |_____| |_____|

%e | | | | | | | | |_____|

%e |_|_|_| | | | | |_____|

%e |_____| |_|_|_| |_____|

%e a(4) = 3, because there are 3 tilings of a 4 X 4 rectangle using straight (3 X 1) trominoes and 2 X 2 tiles:

%e ._._____. ._____._. ._._._._.

%e | |_____| |_____| | | . | . |

%e | | . | | | | . | | |___|___|

%e |_|___| | | |___|_| | . | . |

%e |_____|_| |_|_____| |___|___|

%p gf:= -(x^3+x-1) *(x^18 -3*x^15 +x^14 +7*x^12 -3*x^11 -11*x^9 +3*x^8 +12*x^6 -x^5 -6*x^3+1) *(x-1)^2 *(x^2+x+1)^2 / (x^30 -x^29 +x^28 -5*x^27 +5*x^26 -4*x^25 +19*x^24 -12*x^23 +8*x^22 -56*x^21 +14*x^20 -10*x^19 +119*x^18 -2*x^17 +18*x^16 -174*x^15 -19*x^14 -35*x^13 +173*x^12 +31*x^11 +44*x^10 -115*x^9 -23*x^8 -29*x^7 +48*x^6 +8*x^5 +9*x^4 -11*x^3 -x^2 -x+1):

%p a:= n-> coeff(series(gf, x, n+1),x,n);

%p seq(a(n), n=0..50);

%Y Cf. A165716, A165791, A165799, A190759, A219862.

%Y Column k=4 of A219967.

%K nonn,nice

%O 0,4

%A _Alois P. Heinz_, Dec 20 2011