%I #5 Mar 31 2012 12:36:47
%S 16254,247800,3166800,42948906,570876264,7639914240,102007509450,
%T 1363052811036,18208854699840,243269546365104,3249989575221480,
%U 43418974382256900,580064204439798876,7749486952669625562
%N Number of (n+2)X7 binary arrays avoiding patterns 000 and 001 in rows, columns and nw-to-se diagonals
%C Column 5 of A202435
%H R. H. Hardin, <a href="/A202432/b202432.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +127*a(n-2) +630*a(n-3) -833*a(n-4) -11152*a(n-5) +1361*a(n-6) +120426*a(n-7) -27706*a(n-8) -970514*a(n-9) +956041*a(n-10) +5195689*a(n-11) -12185306*a(n-12) -7271888*a(n-13) +67290402*a(n-14) -113398900*a(n-15) +64582694*a(n-16) +53102281*a(n-17) -99409946*a(n-18) +15651258*a(n-19) +70168195*a(n-20) -36914226*a(n-21) -39408364*a(n-22) +31114063*a(n-23) +22323040*a(n-24) -18373343*a(n-25) -14066157*a(n-26) +7300031*a(n-27) +8575020*a(n-28) -646322*a(n-29) -3781999*a(n-30) -1391339*a(n-31) +589349*a(n-32) +716746*a(n-33) +267368*a(n-34) +31292*a(n-35) -7315*a(n-36) -1484*a(n-37) +521*a(n-38) +98*a(n-39) -27*a(n-40) -3*a(n-41) +a(n-42)
%e Some solutions for n=1
%e ..0..1..1..1..1..1..0....1..0..1..0..1..1..0....1..1..1..1..1..1..1
%e ..1..1..0..1..1..1..1....1..1..1..1..1..0..1....1..0..1..0..1..0..1
%e ..1..1..1..1..0..1..1....0..1..1..0..1..1..1....0..1..1..1..0..1..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Dec 19 2011
|