login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X5 binary arrays avoiding patterns 001 and 111 in rows and columns
1

%I #5 Mar 31 2012 12:36:47

%S 611,2293,7349,20247,54611,136304,327679,763588,1721033,3799888,

%T 8211737,17438746,36502015,75371771,153887886,310995366,622783262,

%U 1237165150,2439654168,4779420957,9307434062,18026860476,34742343252,66653403132

%N Number of (n+2)X5 binary arrays avoiding patterns 001 and 111 in rows and columns

%C Column 3 of A202378

%H R. H. Hardin, <a href="/A202373/b202373.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +6*a(n-2) -27*a(n-3) -58*a(n-4) +123*a(n-5) +317*a(n-6) -210*a(n-7) -1221*a(n-8) -292*a(n-9) +2673*a(n-10) +2865*a(n-11) -2824*a(n-12) -6786*a(n-13) -1929*a(n-14) +7083*a(n-15) +8031*a(n-16) +1548*a(n-17) -6345*a(n-18) -7798*a(n-19) -5052*a(n-20) +2589*a(n-21) +4899*a(n-22) +5997*a(n-23) +2472*a(n-24) +3139*a(n-25) -3481*a(n-26) -3858*a(n-27) -7252*a(n-28) -570*a(n-29) -2112*a(n-30) +5334*a(n-31) +1212*a(n-32) +5048*a(n-33) -2659*a(n-34) +2670*a(n-35) -2841*a(n-36) +3203*a(n-37) -2780*a(n-38) +2044*a(n-39) -4190*a(n-40) +641*a(n-41) -3147*a(n-42) +2045*a(n-43) -992*a(n-44) +2429*a(n-45) -588*a(n-46) +1430*a(n-47) -717*a(n-48) +793*a(n-49) -543*a(n-50) +320*a(n-51) -513*a(n-52) +16*a(n-53) -325*a(n-54) +59*a(n-55) -47*a(n-56) +114*a(n-57) +23*a(n-58) +48*a(n-59) -5*a(n-60) +a(n-61) -9*a(n-62) -2*a(n-63) -2*a(n-64)

%e Some solutions for n=5

%e ..1..1..0..1..0....1..1..0..1..0....1..0..1..1..0....0..1..0..1..1

%e ..0..1..1..0..1....0..1..1..0..0....0..1..0..1..1....1..0..1..0..1

%e ..1..0..0..0..0....1..0..1..0..0....1..0..1..0..0....0..1..0..1..0

%e ..0..1..1..0..0....0..0..0..0..0....1..1..0..0..0....1..0..1..0..1

%e ..1..0..1..0..0....1..0..1..0..0....0..1..1..0..0....1..1..0..0..0

%e ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..1..1..0..1

%e ..1..0..0..0..0....1..0..0..0..0....0..1..0..0..0....1..0..1..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Dec 18 2011