Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 May 27 2018 06:55:33
%S 240,640,1400,2688,4704,7680,11880,17600,25168,34944,47320,62720,
%T 81600,104448,131784,164160,202160,246400,297528,356224,423200,499200,
%U 585000,681408,789264,909440,1042840,1190400,1353088,1531904,1727880,1942080
%N Number of (n+2) X 4 binary arrays avoiding patterns 001 and 101 in rows and columns.
%C Column 2 of A202202.
%H R. H. Hardin, <a href="/A202196/b202196.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 4*(n+4)*(n+3)*(n+2)^2/3.
%F Conjectures from _Colin Barker_, May 27 2018: (Start)
%F G.f.: 8*x*(30 - 70*x + 75*x^2 - 39*x^3 + 8*x^4) / (1 - x)^5.
%F a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
%F (End)
%e Some solutions for n=6:
%e ..0..1..1..1....1..1..1..1....1..1..1..0....1..1..1..1....1..1..1..1
%e ..1..1..1..1....1..1..1..0....1..1..1..1....1..1..1..1....1..1..1..1
%e ..1..1..1..1....1..1..0..0....1..1..1..0....0..1..1..1....1..1..1..1
%e ..1..1..1..0....1..1..0..0....0..1..1..0....0..1..1..1....1..1..1..1
%e ..1..1..1..0....1..1..0..0....0..1..1..0....0..1..1..1....1..1..1..1
%e ..1..1..1..0....1..1..0..0....0..1..0..0....0..1..1..0....0..1..1..1
%e ..1..1..0..0....1..1..0..0....0..0..0..0....0..1..1..0....0..1..1..0
%e ..1..1..0..0....1..1..0..0....0..0..0..0....0..1..0..0....0..1..1..0
%Y Cf. A202202.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 14 2011