login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Prefixing digits to Mersenne primes to obtain larger primes.
1

%I #40 Nov 18 2018 07:51:59

%S 13,17,131,4127,18191,10131071,1524287,362147483647,

%T 152305843009213693951,58618970019642690137449562111,

%U 57162259276829213363391578010288127,55170141183460469231731687303715884105727

%N Prefixing digits to Mersenne primes to obtain larger primes.

%C The smallest prefixing digits for the Mersenne primes are given in A209385. - _Gilbert Mozzo_, Mar 07 2012

%C The next term a(13) has 160 decimal digits. - _Andrew Howroyd_, Nov 17 2018

%H Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/prptop.php">PRP Top Records</a>

%F Mersenne prime + n*10^D with D = number of digits of the Mersenne prime.

%e For Mersenne4: -1 + 2^7 + 4*10^3 = 4127 which is prime.

%o (PARI)

%o ppfx(n)={my(w=10^(1+logint(n,10)), k=n+w); while(!ispseudoprime(k), k+=w); k}

%o { for(n=1, 100, my(p=1<<prime(n)-1); if(ispseudoprime(p), print1(ppfx(p), ", "))) } \\ _Andrew Howroyd_, Nov 17 2018

%Y Cf. A000668, A209385.

%K nonn,base

%O 1,1

%A _Gilbert Mozzo_, Dec 12 2011

%E a(7)-a(9) added by _Gilbert Mozzo_, Mar 07 2012

%E a(10)-a(12) from _Andrew Howroyd_, Nov 17 2018