login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Fibonacci(n) - p, where p is the largest prime < Fibonacci(n).
2

%I #12 Aug 09 2015 01:06:20

%S 2,1,2,2,3,2,6,5,4,4,3,4,14,5,4,2,7,4,8,17,8,14,31,14,10,37,20,26,9,

%T 20,22,11,6,12,15,32,18,17,18,16,43,24,6,17,20,26,27,20,6,9,12,34,29,

%U 36,30,47,48,4,45,32,54,27,132,22,31,4,32,11,12,60,7,76

%N a(n) = Fibonacci(n) - p, where p is the largest prime < Fibonacci(n).

%F a(n) = A049711(A000045(n)). - _R. J. Mathar_, Dec 13 2011

%e a(7) = Fibonacci(7) - 19 = 21-19 = 2;

%e a(11) = Fibonacci(11) - 83 = 89 - 83 = 6.

%p A049711 := proc(n)

%p n-prevprime(n) ;

%p end proc:

%p A202090 := proc(n)

%p A049711(combinat[fibonacci](n) );

%p end proc:

%p seq(A202090(n),n=5..80) ; # _R. J. Mathar_, Dec 13 2011

%t f[n_]:=Module[{nf=Fibonacci[n]},nf-NextPrime[nf,-1]];f/@Range[5,90]

%Y Cf. A000045.

%K nonn

%O 5,1

%A _Michel Lagneau_, Dec 11 2011