login
A202089
Numbers n such that n^2 and (n+1)^2 have same digit sum.
4
4, 13, 22, 49, 58, 76, 103, 130, 139, 157, 193, 202, 229, 247, 256, 274, 283, 301, 391, 418, 427, 454, 463, 472, 481, 508, 526, 553, 598, 607, 616, 643, 661, 679, 688, 724, 733, 742, 760, 769, 778, 796, 850, 868, 877, 886, 904, 913, 931, 949, 958, 976, 1003
OFFSET
1,1
COMMENTS
Or numbers n such that A004159(n)=A004159(n+1), or A007953(n^2)=A007953((n+1)^2).
Corresponding digit sums are of the form 7+9k, with k=1, 2, 3,... .
Numbers n are of the form 4+9m, with m=0, 1, 2, 5, 6, 8, 11, ... .
A240752(a(n)) = 0. - Reinhard Zumkeller, Apr 12 2014
EXAMPLE
4^2=16 and 5^2=25 have same digit sum ds=7.
13^2=169 and 14^2=196 have ds=16.
76^2=5776 and 77^2=5929 have ds=25.
526^2=276676 and 527^2=277729 have ds=34.
MATHEMATICA
cnt = 0; nn = 10000; n = 4; Reap[While[cnt < nn, While[Total[IntegerDigits[n^2]] != Total[IntegerDigits[(n + 1)^2]], n = n + 9]; cnt++; Sow[n]; n = n + 9]][[2, 1]]
PROG
(Haskell)
import Data.List (elemIndices)
a202089 n = a202089_list !! (n-1)
a202089_list = elemIndices 0 a240752_list
-- Reinhard Zumkeller, Apr 12 2014
(Python)
def ok(n): return sum(map(int, str(n*n))) == sum(map(int, str((n+1)**2)))
print(list(filter(ok, range(1004)))) # Michael S. Branicky, Apr 13 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Zak Seidov, Dec 11 2011
STATUS
approved