%I #5 Mar 30 2012 16:52:08
%S 6,6,3,6,3,1,1,2,3,3,3,3,3,3,1,2,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,6,1,1,
%T 1,3,3,3,3,3,3,1,1,1,1,1,1,1,1,1
%N Denominator of mass of oriented maximal Wicks forms of genus n.
%H R. Bacher and A. Vdovina, <a href="http://arXiv.org/abs/math.CO/0110025">Counting 1-vertex triangulations of oriented surfaces</a>, Discrete Math. 246 (2002), 13-27.
%e 1/6, 35/6, 5005/3, 8083075/6, 6506875375/3, 5849680962125, 23808201515848750, 272830085270868750625/2, 3141638431894053663446875/3, 31136778498501965858421978125/3, ...
%p m1:=g->2*(1/12)^g*(6*g-5)!/(g!*(3*g-3)!);
%p s1:=[seq(m1(g),g=1..50)]:
%p s1a:=[seq(numer(m1(g)),g=1..50)]; #A202067
%p s1b:=[seq(denom(m1(g)),g=1..50)]; #A202068
%p s2:=[seq(6*m1(g),g=1..20)]: #A202066
%K nonn,frac
%O 1,1
%A _N. J. A. Sloane_, Dec 10 2011