Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 May 26 2018 03:34:53
%S 966,3304,9170,22092,47950,95984,180054,320180,544390,890904,1410682,
%T 2170364,3255630,4775008,6864158,9690660,13459334,18418120,24864546,
%U 33152812,43701518,57002064,73627750,94243604,119616966,150628856
%N Number of (n+2) X 7 binary arrays avoiding patterns 001 and 110 in rows and columns.
%C Column 5 of A202052.
%H R. H. Hardin, <a href="/A202049/b202049.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = (1/180)*n^7 + (7/36)*n^6 + (511/180)*n^5 + (805/36)*n^4 + (4606/45)*n^3 + (2443/9)*n^2 + (1854/5)*n + 196.
%F Conjectures from _Colin Barker_, May 26 2018: (Start)
%F G.f.: 14*x*(69 - 316*x + 699*x^2 - 918*x^3 + 755*x^4 - 384*x^5 + 111*x^6 - 14*x^7) / (1 - x)^8.
%F a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
%F (End)
%e Some solutions for n=3:
%e ..0..1..0..1..0..1..0....0..1..1..1..1..1..1....0..1..0..1..0..0..0
%e ..1..0..1..0..1..0..1....1..0..1..0..1..0..0....1..0..1..1..1..1..1
%e ..0..1..0..1..0..1..0....1..1..1..1..1..1..1....0..1..0..1..0..0..0
%e ..0..0..0..0..0..0..0....1..0..1..0..1..0..1....0..1..0..1..0..1..0
%e ..0..1..0..0..0..0..0....1..0..1..0..1..1..1....0..1..0..1..0..0..0
%Y Cf. A202052.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 10 2011