login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202027
Number of n X 2 zero-sum -1..1 arrays with rows and columns lexicographically nondecreasing.
1
2, 7, 21, 56, 130, 281, 555, 1034, 1827, 3090, 5028, 7929, 12143, 18144, 26512, 37981, 53440, 74001, 100965, 135932, 180770, 237705, 309317, 398656, 509191, 644982, 810632, 1011433, 1253353, 1543214, 1888620, 2298205, 2781564, 3349469, 4013843
OFFSET
1,1
COMMENTS
Column 2 of A202033.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -6*a(n-3) +6*a(n-5) +7*a(n-6) -9*a(n-7) -9*a(n-8) +7*a(n-9) +6*a(n-10) -6*a(n-12) +3*a(n-14) -a(n-15).
Empirical g.f.: x*(2 + x + 5*x^3 + 4*x^4 + 5*x^5 - 8*x^6 - 8*x^7 + 9*x^8 + 5*x^9 - 2*x^10 - 5*x^11 + 3*x^13 - x^14) / ((1 - x)^8*(1 + x)^3*(1 + x + x^2)^2). - Colin Barker, May 25 2018
EXAMPLE
Some solutions for n=10:
.-1.-1...-1.-1...-1.-1...-1..0...-1.-1...-1.-1...-1.-1...-1.-1...-1.-1...-1..0
.-1..1...-1.-1...-1.-1...-1..0...-1..1...-1.-1...-1..1...-1.-1...-1.-1...-1..0
.-1..1...-1.-1...-1.-1....0.-1....0..0...-1.-1...-1..1...-1.-1...-1..1...-1..0
.-1..1...-1..1....0..0....0..0....0..0...-1..1...-1..1....0..0....0..0....0..1
..0.-1....0..1....0..1....0..0....0..1....0..0...-1..1....0..1....0..0....1.-1
..0..1....0..1....1.-1....0..0....0..1....0..1...-1..1....0..1....1.-1....1.-1
..0..1....0..1....1..0....0..0....1.-1....0..1....0..0....0..1....1.-1....1.-1
..1.-1....0..1....1..0....1.-1....1.-1....0..1....0..0....0..1....1..0....1.-1
..1.-1....1.-1....1..0....1..0....1.-1....0..1....0..0....0..1....1..0....1.-1
..1..0....1..1....1..1....1..1....1.-1....1..1....1..1....1..0....1..1....1..1
CROSSREFS
Cf. A202033.
Sequence in context: A212338 A246861 A305601 * A374958 A018036 A007050
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 09 2011
STATUS
approved