OFFSET
0,3
COMMENTS
The number of endofunctions with an odd number of recurrent elements.
It appears that almost all endofunctions have an even number of recurrent elements.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..386
FORMULA
E.g.f.: sinh(log(((1-LambertW(-x))/(1+LambertW(-x)))^(1/2))). - corrected by Vaclav Kotesovec, Sep 24 2013
a(n) ~ n! * 2^(3/4)*Gamma(3/4)*exp(n)/(4*Pi*n^(3/4)) * (1+7*Pi/(24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Sep 24 2013
MAPLE
b:= proc(n, t) option remember; `if`(n=0, t, add(
`if`(j::odd, (j-1)!*b(n-j, 1-t)*
binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j, 0)*n^(n-j)*binomial(n-1, j-1), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, May 20 2016
MATHEMATICA
t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Sinh[Log[((1 + t)/(1 - t))^(1/2)]], {x, 0, 20}], x]
CoefficientList[Series[(((1-LambertW[-x])/(1+LambertW[-x]))^(1/2))/2 - 1/(2*((1-LambertW[-x])/(1+LambertW[-x]))^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 24 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 08 2011
STATUS
approved