The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A202013 The number of functions f:{1,2,...,n}->{1,2,...,n} that have an odd number of odd length cycles and no even length cycles. 1
 0, 1, 2, 12, 100, 1120, 15606, 260344, 5056136, 112026240, 2788230250, 77009739136, 2337124786668, 77302709780608, 2767629599791070, 106631592312384000, 4398877912885363216, 193450993635808976896, 9034380526387410161874, 446519425974262943518720, 23284829853408862172112500 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The number of endofunctions with an odd number of recurrent elements. It appears that almost all endofunctions have an even number of recurrent elements. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..386 FORMULA E.g.f.: sinh(log(((1-LambertW(-x))/(1+LambertW(-x)))^(1/2))). - corrected by Vaclav Kotesovec, Sep 24 2013 a(n) ~ n! * 2^(3/4)*Gamma(3/4)*exp(n)/(4*Pi*n^(3/4)) * (1+7*Pi/(24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Sep 24 2013 MAPLE b:= proc(n, t) option remember; `if`(n=0, t, add(       `if`(j::odd, (j-1)!*b(n-j, 1-t)*        binomial(n-1, j-1), 0), j=1..n))     end: a:= n-> add(b(j, 0)*n^(n-j)*binomial(n-1, j-1), j=0..n): seq(a(n), n=0..20);  # Alois P. Heinz, May 20 2016 MATHEMATICA t = Sum[n^(n - 1) x^n/n!, {n, 1, 20}]; Range[0, 20]! CoefficientList[Series[Sinh[Log[((1 + t)/(1 - t))^(1/2)]], {x, 0, 20}], x] CoefficientList[Series[(((1-LambertW[-x])/(1+LambertW[-x]))^(1/2))/2 - 1/(2*((1-LambertW[-x])/(1+LambertW[-x]))^(1/2)), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 24 2013 *) CROSSREFS Cf. A060435, A116956. Sequence in context: A168365 A055865 A085389 * A151505 A096347 A137483 Adjacent sequences:  A202010 A202011 A202012 * A202014 A202015 A202016 KEYWORD nonn AUTHOR Geoffrey Critzer, Dec 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 09:54 EST 2021. Contains 349419 sequences. (Running on oeis4.)