Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 May 04 2024 07:06:07
%S 1,0,2,6,28,160,1078,8358,73260,716112,7721844,91039740,1164932470,
%T 16077368580,238037983558,3763371442530,63276351409092,
%U 1127406030014112,21218146474666864,420611921077524912,8759617763834095796,191208185756772875880
%N Central coefficients in Product_{k=0..n-1} (1 + k*x + x^2).
%H Vaclav Kotesovec, <a href="/A201950/b201950.txt">Table of n, a(n) for n = 0..300</a>
%F Central terms of rows in irregular triangle A201949.
%F a(n) = (n-1)*a(n-1) + 2*A201952(n-1) for n>0. [corrected by _Vaclav Kotesovec_, May 04 2024]
%F E.g.f.: BesselI(0, 2*log(1 - x)). - _Ilya Gutkovskiy_, Feb 22 2019
%F E.g.f.: Sum_{n>=0} log(1 - x)^(2*n) / n!^2. [After _Ilya Gutkovskiy_ - _Paul D. Hanna_, Feb 24 2019]
%e The coefficients in Product_{k=0..n-1} (1+k*x+x^2) form triangle A201949:
%e (1);
%e 1,(0), 1;
%e 1, 1,(2), 1, 1;
%e 1, 3, 5, (6), 5, 3, 1;
%e 1, 6, 15, 24, (28), 24, 15, 6, 1;
%e 1, 10, 40, 90, 139, (160), 139, 90, 40, 10, 1;
%e 1, 15, 91, 300, 629, 945, (1078), 945, 629, 300, 91, 15, 1;
%e 1, 21, 182, 861, 2520, 5019, 7377, (8358), 7377, 5019, 2520, 861, 182, 21, 1;
%e 1, 28, 330, 2156, 8729, 23520, 45030, 65016, (73260), 65016, 45030, 23520, 8729, 2156, 330, 28, 1; ...
%e where coefficients in parenthesis form the initial terms of this sequence.
%t Flatten[{1,Table[Coefficient[Expand[Product[1 + k*x + x^2,{k,0,n-1}]],x^n],{n,1,20}]}] (* _Vaclav Kotesovec_, Feb 10 2015 *)
%o (PARI) {a(n) = polcoeff( prod(k=1,n,1+(k-1)*x+x^2+x*O(x^n)), n)}
%o for(n=0,30, print1(a(n),", "))
%o (PARI) /* From series BesselI(0, 2*log(1 - x)), after _Ilya Gutkovskiy_ */
%o {a(n) = n!*polcoeff( sum(m=0,n, log(1 - x +x*O(x^n))^(2*m)/m!^2), n)}
%o for(n=0,30, print1(a(n),", ")) \\ _Paul D. Hanna_, Feb 24 2019
%Y Cf. A201949, A201951, A201952, A201953.
%Y Cf. A086672, A324304 (variant).
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 06 2011