login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201883
The number of simple labeled graphs on n nodes such that i) all connected components have exactly one cycle, ii) all vertices have degree at most 3, iii) vertices of degree 3 are on a cycle.
0
1, 0, 0, 1, 15, 192, 2530, 36165, 570507, 9969400, 192525084, 4087525095, 94813475185, 2387594185944, 64886220442290, 1892895183489583, 58997625514583385, 1956486468000839280, 68781080882461076488, 2555098360335768584385, 100009432504671913008351
OFFSET
0,5
FORMULA
E.g.f.: ((1-x)/(1-2x))^(1/2)*exp((x^2-2x)/(4(1-x)^2)).
a(n) ~ (2*n)^n/exp(n+3/4). - Vaclav Kotesovec, Sep 24 2013
From Benedict W. J. Irwin, May 25 2016: (Start)
Let y(0)=1, y(1)=0, y(2)=0, y(3)=1/6,
Let 4ny(n)-(14n+15)y(n+1)+(18n+36)y(n+2)-(10n+30)y(n+3)+(2n+8)y(n+4)=0,
a(n) = n!*y(n).
(End)
MATHEMATICA
a = x/(1 - x); Range[0, 20]! CoefficientList[Series[Exp[Log[1/(1 - a)]/2 - a/2 - a^2/4], {x, 0, 20}], x]
CROSSREFS
Sequence in context: A051545 A220528 A006238 * A324357 A172204 A015673
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Dec 06 2011
STATUS
approved