login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201875
Number of zero-sum -n..n arrays of 4 elements with first and second differences also in -n..n.
1
3, 19, 45, 95, 173, 285, 431, 633, 879, 1183, 1557, 1999, 2509, 3117, 3803, 4581, 5471, 6463, 7557, 8791, 10137, 11609, 13235, 14997, 16895, 18975, 21201, 23587, 26169, 28921, 31843, 34989, 38315, 41835, 45593, 49555, 53721, 58153, 62799, 67673, 72827
OFFSET
1,1
COMMENTS
Row 4 of A201873.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +a(n-3) -2*a(n-4) -2*a(n-5) +a(n-6) +a(n-7) +a(n-8) -a(n-9).
Empirical g.f.: (3 + 16*x + 23*x^2 + 28*x^3 + 20*x^4 + 16*x^5 + 3*x^6 + 2*x^7 - x^8) / ((1 - x)^4*(1 + x)*(1 + x + x^2)^2). - Colin Barker, Feb 15 2018
EXAMPLE
Some solutions for n=11:
..0...-1....4...-7...-7...10...-1...-6...-9..-11....1....9....4...-8...-4....7
..0....5...-2...-4...-2...-1....1...-3....1...-3...-1....6...-4...-4....4....2
..2....0....1....5...-1...-3...-2....4....5....3....1...-4...-1....2....3...-6
.-2...-4...-3....6...10...-6....2....5....3...11...-1..-11....1...10...-3...-3
CROSSREFS
Sequence in context: A146664 A028880 A162905 * A063553 A099007 A023280
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 06 2011
STATUS
approved