login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Decimal expansion of greatest x satisfying 2*x^2 - 1 = csc(x) and 0<x<Pi.
3

%I #11 Sep 12 2018 01:33:35

%S 3,0,8,6,1,5,8,7,7,4,3,7,7,1,2,7,1,8,1,2,2,5,9,4,8,2,8,6,3,5,8,2,1,4,

%T 5,2,4,9,8,5,3,3,6,2,2,2,6,5,7,2,2,3,1,2,0,5,5,0,0,3,9,9,0,9,2,5,4,4,

%U 4,8,6,8,6,5,9,4,8,8,2,3,8,2,7,4,4,0,4,8,0,4,6,9,4,9,0,8,0,2,7

%N Decimal expansion of greatest x satisfying 2*x^2 - 1 = csc(x) and 0<x<Pi.

%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A201665/b201665.txt">Table of n, a(n) for n = 1..10000</a>

%e least: 1.039245650797247793231929327242483730000...

%e greatest: 3.086158774377127181225948286358214524...

%t a = 2; c = -1;

%t f[x_] := a*x^2 + c; g[x_] := Csc[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201664 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201665 *)

%o (PARI) a=2; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Sep 11 2018

%Y Cf. A201564.

%K nonn,cons

%O 1,1

%A _Clark Kimberling_, Dec 04 2011