%I #10 Mar 01 2019 08:04:19
%S 1,1,0,1,1,2,1,2,4,6,1,3,7,13,22,1,4,11,24,46,80,1,5,16,40,86,166,296,
%T 1,6,22,62,148,314,610,1106,1,7,29,91,239,553,1163,2269,4166,1,8,37,
%U 128,367,920,2083,4352,8518,15792,1,9,46,174,541,1461,3544,7896
%N Triangle formed by T(n,n) = (-1)^n*Sum_{j=0..n} C(-n,j), T(n,k) = Sum_{j=0..k} T(n-1,j) for k=0..n-1, and n>=0, read by rows.
%C Notation: If a sequence id is starred then the offset and/or some terms are different. Starred terms indicate the variance.
%C Row sums: [A026641 ] [1, 1, 4, 13, 46, 166, 610]
%C --
%C T(j+2, 2) [A000124*] [1*, 2 , 4, 7, 11, 16, 22]
%C T(j+3, 3) [A003600*] [1*, 2*, 6, 13, 24, 40, 62]
%C --
%C T(j , j) [A072547 ] [1, 0, 2, 6, 22, 80, 296]
%C T(j+1, j) [A026641 ] [1, 1, 4, 13, 46, 166, 610]
%C T(j+2, j) [A014300 ] [1, 2, 7, 24, 86, 314, 1163]
%C T(j+3, j) [A014301*] [1, 3, 11, 40, 148, 553, 2083]
%C T(j+4, j) [A172025 ] [1, 4, 16, 62, 239, 920, 3544]
%C T(j+5, j) [A172061 ] [1, 5, 22, 91, 367, 1461, 5776]
%C T(j+6, j) [A172062 ] [1, 6, 29, 128, 541, 2232, 9076]
%C T(j+7, j) [A172063 ] [1, 7, 37, 174, 771, 3300, 13820]
%C --
%C T(2j ,j) [Central ] [1, 1, 7, 40, 239, 1461, 9076]
%C T(2j+1,j) [A183160 ] [1, 2, 11, 62, 367, 2232, 13820]
%C T(2j+2,j) [ ] [1, 3, 16, 91, 541, 3300, 20476]
%C T(2j+3,j) [A199033*] [1, 4, 22, 128, 771, 4744, 29618]
%H G. C. Greubel, <a href="/A201635/b201635.txt">Rows n=0..100 of triangle, flattened</a>
%e Triangle begins as:
%e [n]|k->
%e [0] 1
%e [1] 1, 0
%e [2] 1, 1, 2
%e [3] 1, 2, 4, 6
%e [4] 1, 3, 7, 13, 22
%e [5] 1, 4, 11, 24, 46, 80
%e [6] 1, 5, 16, 40, 86, 166, 296
%e [7] 1, 6, 22, 62, 148, 314, 610, 1106.
%p A201635 := proc(n,k) option remember; local j;
%p if n=k then (-1)^n*add(binomial(-n,j), j=0..n)
%p else add(A201635(n-1,j), j=0..k) fi end:
%p for n from 0 to 7 do seq(A(n,k), k=0..n) od;
%t T[n_, k_]:= T[n, k]= If[k==n, (-1)^n*Sum[Binomial[-n, j], {j, 0, n}], Sum[T[n-1, j], {j, 0, k}]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 27 2019 *)
%o (Sage)
%o @CachedFunction
%o def A201635(n, k):
%o if n==k: return (-1)^n*add(binomial(-n, j) for j in (0..n))
%o return add(A201635(n-1, j) for j in (0..k))
%o for n in (0..7) : [A201635(n, k) for k in (0..n)]
%o (PARI)
%o {T(n,k) = if(k==n, (-1)^n*sum(j=0,n, binomial(-n,j)), sum(j=0,k, T(n-1,j)))};
%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Feb 27 2019
%K nonn,tabl
%O 0,6
%A _Peter Luschny_, Nov 14 2012