Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jul 07 2012 19:08:04
%S 1,1,4,29,312,4481,80768,1754549,44647040,1303097665,42923116032,
%T 1575332861101,63754405679104,2820829737123841,135469202252333056,
%U 7018336152909163205,390175030207597805568,23169468447962190613121,1463683656780476860989440,98016257612539018485477821
%N E.g.f. satisfies: A(x) = 1/(1 - sin(x*A(x))).
%C Coefficients in the expansion of 1/(1-sin(x)) yield the Euler numbers (A000111).
%F E.g.f. A(x) satisfies: A( x*(1 - sin(x)) ) = 1/(1 - sin(x)).
%F E.g.f.: (1/x)*Series_Reversion( x*(1 - sin(x)) ).
%F a(n) = [x^n] 1/(1 - sin(x))^(n+1) / (n+1).
%F a(n) = A214222(n+1)/(n+1).
%e E.g.f.: A(x) = 1 + x + 4*x^2/2! + 29*x^3/3! + 312*x^4/4! + 4481*x^5/5! +...
%e The coefficients in initial powers of G(x) = 1/(1 - sin(x)) begin:
%e G^1: [(1), 1, 2, 5, 16, 61, 272, 1385, 7936, ..., A000111(n+1), ...];
%e G^2: [1,(2), 6, 22, 96, 482, 2736, 17302, ...];
%e G^3: [1, 3,(12), 57, 312, 1923, 13152, 98697, ...];
%e G^4: [1, 4, 20,(116), 760, 5524, 44000, 380516, ...];
%e G^5: [1, 5, 30, 205,(1560), 13025, 118080, 1153105, ...];
%e G^6: [1, 6, 42, 330, 2856,(26886), 272832, 2963850, ...];
%e G^7: [1, 7, 56, 497, 4816, 50407, (565376), 6754097, ...];
%e G^8: [1, 8, 72, 712, 7632, 87848, 1078272,(14036392), ...]; ...
%e where coefficients in parenthesis form initial terms of this sequence:
%e [1/1, 2/2, 12/3, 116/4, 1560/5, 26886/6, 565376/7, 14036392/8, ...].
%o (PARI) {a(n)=n!*polcoeff(1/x*serreverse(x*(1-sin(x+x^2*O(x^n)))),n)}
%o (PARI) {a(n)=n!*polcoeff(1/(1-sin(x+x*O(x^n)))^(n+1)/(n+1), n)}
%Y Cf. A214222, A201594, A000111.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 03 2011