%I #12 Jan 30 2025 13:54:22
%S 3,0,8,7,6,0,9,6,0,2,7,8,3,6,0,6,1,3,3,0,0,1,1,9,0,4,9,8,8,4,6,7,0,1,
%T 5,0,7,7,1,5,8,0,1,9,5,4,6,6,8,5,6,6,5,3,7,9,3,4,2,4,0,9,4,1,4,2,9,0,
%U 1,8,0,5,2,0,5,2,6,7,1,8,3,9,8,1,8,5,7,2,8,3,5,2,7,8,2,3,7,6,2
%N Decimal expansion of greatest x satisfying x^2 + 9 = csc(x) and 0 < x < Pi.
%C See A201564 for a guide to related sequences. The Mathematica program includes a graph.
%H G. C. Greubel, <a href="/A201580/b201580.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e least: 0.111187649530336552411321691800657533611...
%e greatest: 3.087609602783606133001190498846701507...
%t a = 1; c = 9;
%t f[x_] := a*x^2 + c; g[x_] := Csc[x]
%t Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201578 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
%t RealDigits[r] (* A201580 *)
%o (PARI) a=1; c=9; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ _G. C. Greubel_, Aug 21 2018
%Y Cf. A201564.
%K nonn,cons,changed
%O 1,1
%A _Clark Kimberling_, Dec 03 2011