login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201367
E.g.f.: 3*exp(3*x) / (5 - 2*exp(3*x)).
4
1, 5, 35, 345, 4515, 73905, 1451835, 33273945, 871529715, 25681042305, 840815302635, 30281769805545, 1189735610250915, 50638609760802705, 2321120945531697435, 113992686944812385145, 5971520591679167948115, 332369999588147180115105, 19587647624733292373756235
OFFSET
0,2
LINKS
FORMULA
O.g.f.: A(x) = Sum_{n>=0} n! * 5^n*x^n / Product_{k=0..n} (1+3*k*x).
O.g.f.: A(x) = 1/(1 - 5*x/(1-2*x/(1 - 10*x/(1-4*x/(1 - 15*x/(1-6*x/(1 - 20*x/(1-8*x/(1 - 25*x/(1-10*x/(1 - ...))))))))))), a continued fraction.
a(n) = Sum_{k=0..n} (-3)^(n-k) * 5^k * Stirling2(n,k) * k!.
a(n) = Sum_{k=0..n} A123125(n,k)*5^k*2*(n-k). - Philippe Deléham, Nov 30 2011
a(n) ~ n! / (2*(log(5/2)/3)^(n+1)). - Vaclav Kotesovec, Jun 13 2013
a(n) = 3^n*log(5/2) * Integral_{x = 0..oo} (ceiling(x))^n * (5/2)^(-x) dx. - Peter Bala, Feb 06 2015
EXAMPLE
E.g.f.: E(x) = 1 + 5*x + 35*x^2/2! + 345*x^3/3! + 4515*x^4/4! + 73905*x^5/5! + ...
O.g.f.: A(x) = 1 + 5*x + 35*x^2 + 345*x^3 + 4515*x^4 + 73905*x^5 + ...
where A(x) = 1 + 5*x/(1+3*x) + 2!*5^2*x^2/((1+3*x)*(1+6*x)) + 3!*5^3*x^3/((1+3*x)*(1+6*x)*(1+9*x)) + 4!*5^4*x^4/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)) + ...
MAPLE
S:= series(3*exp(3*x)/(5-2*exp(3*x)), x, 51):
seq(coeff(S, x, n)*n!, n=0..50); # Robert Israel, Nov 18 2019
MATHEMATICA
Table[Sum[(-3)^(n-k)*5^k*StirlingS2[n, k]*k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jun 13 2013 *)
With[{nn=20}, CoefficientList[Series[(3*Exp[3x])/(5-2*Exp[3x]), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Sep 07 2024 *)
PROG
(PARI) {a(n)=n!*polcoeff(3*exp(3*x+x*O(x^n))/(5 - 2*exp(3*x+x*O(x^n))), n)}
(PARI) {a(n)=polcoeff(sum(m=0, n, 5^m*m!*x^m/prod(k=1, m, 1+3*k*x+x*O(x^n))), n)}
(PARI) {Stirling2(n, k)=if(k<0||k>n, 0, sum(i=0, k, (-1)^i*binomial(k, i)/k!*(k-i)^n))}
{a(n)=sum(k=0, n, (-3)^(n-k)*5^k*Stirling2(n, k)*k!)}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Nov 30 2011
STATUS
approved