Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:36:44
%S 0,2,2,2,4,2,3,8,8,3,4,14,18,14,4,5,23,47,47,23,5,6,36,118,191,118,36,
%T 6,7,54,273,752,752,273,54,7,8,78,585,2732,4860,2732,585,78,8,9,109,
%U 1174,9111,29540,29540,9111,1174,109,9,10,148,2228,28011,164704,310036,164704
%N T(n,k)=Number of nXk 0..1 arrays with rows and columns lexicographically nondecreasing and every element equal to at least one horizontal or vertical neighbor
%C Table starts
%C .0...2....2......3........4..........5............6..............7
%C .2...4....8.....14.......23.........36...........54.............78
%C .2...8...18.....47......118........273..........585...........1174
%C .3..14...47....191......752.......2732.........9111..........28011
%C .4..23..118....752.....4860......29540.......164704.........838248
%C .5..36..273...2732....29540.....310036......3030673.......27104947
%C .6..54..585...9111...164704....3030673.....53350918......867792264
%C .7..78.1174..28011...838248...27104947....867792264....26097731070
%C .8.109.2228..79918..3906802..220732437..12855063828...718921134406
%C .9.148.4030.213153.16781171.1641106829.173064550218.17996760930623
%H R. H. Hardin, <a href="/A201353/b201353.txt">Table of n, a(n) for n = 1..220</a>
%F Empirical: T(n,k) is a polynomial in n of degree 2^k-1 for n>2,1,1,4,10,22,46 for k in 1..7
%e Some solutions for n=10 k=3
%e ..0..0..1....0..0..0....0..0..0....0..1..1....0..0..0....0..0..0....0..0..0
%e ..0..0..1....0..0..0....0..0..1....0..1..1....0..1..1....0..0..0....0..0..0
%e ..0..1..1....0..0..0....0..0..1....0..1..1....0..1..1....0..0..0....0..0..0
%e ..0..1..1....0..1..1....0..0..1....0..1..1....0..1..1....0..0..1....0..0..0
%e ..0..1..1....1..0..0....0..1..1....0..1..1....1..0..0....0..1..1....0..0..1
%e ..1..0..0....1..0..1....0..1..1....0..1..1....1..0..1....1..0..0....0..1..1
%e ..1..1..0....1..0..1....0..1..1....1..0..0....1..0..1....1..0..0....1..0..1
%e ..1..1..0....1..1..1....1..0..0....1..1..1....1..0..1....1..1..0....1..0..1
%e ..1..1..1....1..1..1....1..0..1....1..1..1....1..0..1....1..1..0....1..0..1
%e ..1..1..1....1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....1..1..1
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Nov 30 2011