login
Decimal expansion of x satisfying x^2 + 8 = cot(x) and 0 < x < Pi.
2

%I #8 Apr 10 2021 22:25:55

%S 1,2,4,1,1,8,4,3,7,1,3,0,1,3,1,7,6,5,2,3,8,5,3,9,4,2,3,1,8,7,7,4,2,1,

%T 1,4,1,4,0,4,6,1,4,5,1,4,6,6,1,9,0,6,0,0,3,0,6,0,7,0,1,1,8,3,6,3,2,8,

%U 7,3,4,2,8,2,1,4,1,6,2,4,7,0,2,3,9,3,1,2,4,4,5,6,9,2,1,1,0,4,4

%N Decimal expansion of x satisfying x^2 + 8 = cot(x) and 0 < x < Pi.

%C See A201280 for a guide to related sequences. The Mathematica program includes a graph.

%e x=0.124118437130131765238539423187742114...

%t a = 1; c = 8;

%t f[x_] := a*x^2 + c; g[x_] := Cot[x]

%t Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]

%t RealDigits[r] (* A201287 *)

%Y Cf. A201280.

%K nonn,cons

%O 0,2

%A _Clark Kimberling_, Nov 29 2011