%I
%S 85580,154396,240004,476425,767125,2555956,5518439,28748141,37172564,
%T 40080716,46823500,54615700,80311375,96251275,436925600,1304261335,
%U 1394880175,1526959675,1636213375,1839881024,2212438625,2442495725,2716194871,2976815179,3155294924
%N Coordinates y of points {x,y} of Mordell elliptic curves x^3y^2 for primary extremal points with quadratic extensions over rationals.
%C For x coordinates see A201047.
%C For distances d between cubes and squares see A201268.
%C For successive quadratic extensions see A201278.
%C Theorem (*Artur Jasinski*):
%C Every particular coordinate y contained only one extremal point.
%C Proof (*Artur Jasinski*): Coordinate x is computable from the formula x(y) = round(y^(2/3)) and distance d between cube of x and square of y is computable from the formula d(y) = round(y^(2/3))^3y^2.
%F a(n) = sqrt(A201047(n)^3A201268(n)).
%Y Cf. A200217, A201047, A201268.
%K nonn
%O 1,1
%A _Artur Jasinski_, Nov 29 2011
