login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Initial primes in prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) preceding the maximal gaps in A201051.
3

%I #10 Dec 10 2013 20:07:06

%S 11,165701,1068701,25658441,45002591,93625991,257016491,367438061,

%T 575226131,1228244651,1459270271,2923666841,10180589591,15821203241,

%U 23393094071,37846533071,158303571521,350060308511,382631592641,711854781551,2879574595811,3379186846151

%N Initial primes in prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) preceding the maximal gaps in A201051.

%C Prime septuplets (p, p+2, p+6, p+8, p+12, p+18, p+20) are one of the two types of densest permissible constellations of 7 primes. Maximal gaps between septuplets of this type are listed in A201051; see more comments there.

%H Alexei Kourbatov, <a href="/A201249/b201249.txt">Table of n, a(n) for n = 1..36</a>

%H Tony Forbes, <a href="http://anthony.d.forbes.googlepages.com/ktuplets.htm">Prime k-tuplets</a>

%H Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenprimeseptuplets.htm">Maximal gaps between prime septuplets</a>

%H Alexei Kourbatov, <a href="http://arxiv.org/abs/1309.4053">Tables of record gaps between prime constellations</a>, arXiv preprint arXiv:1309.4053, 2013.

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/k-TupleConjecture.html">k-Tuple Conjecture</a>

%e The gap of 165690 between septuplets starting at p=11 and p=165701 is the very first gap, so a(1)=11. The gap of 903000 between septuplets starting at p=165701 and p=1068701 is a maximal gap - larger than any preceding gap; therefore a(2)=165701. The next gap of 10831800 starts at p=1068701 and is again a maximal gap, so a(3)=1068701. The next gap is smaller, so it does not contribute to the sequence.

%Y Cf. A022009 (prime septuplets p, p+2, p+6, p+8, p+12, p+18, p+20), A201051, A233425.

%K nonn,hard

%O 1,1

%A _Alexei Kourbatov_, Nov 28 2011