login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place 5 non-attacking ferses on an n X n board.
7

%I #17 Aug 22 2024 14:32:02

%S 0,0,12,780,16286,159452,992412,4567836,16959488,53617596,149618794,

%T 377841356,879314442,1911495356,3922051616,7657895196,14321764860,

%U 25791609308,44921419134,75946019596,125016699158,200899440924,315872975684,486869916572,736910896536

%N Number of ways to place 5 non-attacking ferses on an n X n board.

%C Fers is a leaper [1,1].

%H Vincenzo Librandi, <a href="/A201246/b201246.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, p.415

%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (11, -55, 165, -330, 462, -462, 330, -165, 55, -11, 1).

%F a(n) = n^10/120 - 5n^8/12 + 2n^7/3 + 191n^6/24 - 24n^5 - 661n^4/12 + 880n^3/3 - 937n^2/15 - 1176n + 1436, n>=4.

%F G.f.: 2x^3*(11x^11 - 135x^10 + 549x^9 - 993x^8 + 1172x^7 - 2968x^6 + 7085x^5 - 4715x^4 - 10613x^3 - 4183x^2 - 324x - 6)/(x-1)^11.

%t CoefficientList[Series[2 x^2 (11 x^11 - 135 x^10 + 549 x^9 - 993 x^8 + 1172 x^7 - 2968 x^6 + 7085 x^5 - 4715x^4 - 10613 x^3 - 4183 x^2- 324 x - 6)/(x-1)^11, {x, 0, 40}], x] (* _Vincenzo Librandi_, Apr 30 2013 *)

%Y Cf. A172129, A201243, A201244, A201245, A201247, A201248.

%K nonn,easy

%O 1,3

%A _Vaclav Kotesovec_, Nov 28 2011