login
Decimal expansion of root of x^log(x) = log(x)^x.
0

%I #30 Feb 27 2023 02:19:35

%S 5,4,4,4,4,7,2,7,5,4,1,5,4,5,1,4,1,4,1,6,8,5,5,0,6,5,0,5,1,7,0,7,8,9,

%T 8,1,4,7,2,4,0,3,4,8,9,6,2,9,2,3,0,1,9,1,6,4,5,5,2,9,7,6,6,9,7,6,2,0,

%U 9,9,1,4,5,0,3,1,1,5,1,4,0,5,9,4,4,1,6,6,5,1,9,2,2,1,8,4,2,2,2,5,6,4,9,6,0

%N Decimal expansion of root of x^log(x) = log(x)^x.

%e 5.4444727541545141416855065051707898147240...

%p Digits:=105: fsolve(x^log(x)-(log(x)^x) =0, x, 0..10);

%t First@RealDigits[x/.FindRoot[x^Log[x]==Log[x]^x, {x,5}, WorkingPrecision->100]] (* _Sidney Cadot_, Feb 26 2023 *)

%o (PARI) solve(x=5,6,x^log(x)-log(x)^x) \\ _Charles R Greathouse IV_, Aug 26 2017

%K nonn,cons

%O 1,1

%A _Michel Lagneau_, Dec 01 2011