login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of binomial(2n,n)/(2n).
3

%I #13 Oct 30 2019 19:53:27

%S 1,3,10,35,126,77,1716,6435,24310,46189,352716,676039,5200300,

%T 10029150,5170584,300540195,1166803110,756261275,17672631900,

%U 6892326441,89709645740,526024740930,4116715363800,2687300306925,63205303218876,123979633237026,973469712824056,136583760727865,15033633249770520,29566145391215356

%N Numerator of binomial(2n,n)/(2n).

%C There is at least one published paper that refers to binomial(2n,n)/(2n) as the Catalan numbers. Of course the Catalan numbers are really A000108.

%H Patrick Dehornoy, <a href="http://dx.doi.org/10.1016/j.aim.2009.09.016">On the rotation distance between binary trees</a>, Adv. Math. 223 (2010), no. 4, 1316-1355.

%e 1, 3/2, 10/3, 35/4, 126/5, 77, 1716/7, 6435/8, 24310/9, 46189/5, 352716/11, 676039/6, ...

%t Numerator[Table[Binomial[2n,n]/(2n),{n,30}]] (* _Harvey P. Dale_, Jan 06 2013 *)

%Y Cf. A000108, A201059.

%K nonn,frac

%O 1,2

%A _N. J. A. Sloane_, Nov 26 2011