login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the maximal number c of integers that can be chosen from {1,2,...,n} so that all 2^c subsets have distinct sums.
4

%I #60 Dec 23 2024 14:53:42

%S 1,2,2,3,3,3,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,

%T 6,6,6,6,6,6,6,6,6,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,

%U 7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,8,8,8,8

%N a(n) is the maximal number c of integers that can be chosen from {1,2,...,n} so that all 2^c subsets have distinct sums.

%C In the count 2^c of the cardinality of subsets of a set with cardinality c, the empty set - with sum 0 - is included; 2^c is just the row sum of the c-th row in the Pascal triangle.

%C Conjecture (confirmed through k=7): a(n)=k for all n in the interval A005318(k) <= n < A005318(k+1). - _Jon E. Schoenfield_, Nov 28 2013 [Note: This conjecture is false; see A276661 for a counterexample (n=34808712605260918463) in which n is in the interval A005318(66) <= n < A005318(67), yet a(n)=67, not 66. - _Jon E. Schoenfield_, Nov 05 2016]

%C A276661 is the main entry for the distinct subset sums problem. - _N. J. A. Sloane_, Apr 24 2024

%H Fausto A. C. Cariboni, <a href="/A201052/b201052.txt">Table of n, a(n) for n = 1..220</a> (terms 1..120 from Jon E. Schoenfield)

%H T. Khovanova, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/oldermail/seqfan/2010-August/005757.html">The weight puzzle sequence</a>, SeqFan Mailing list Aug 24 2010

%H T. Khovanova et al., <a href="http://blog.tanyakhovanova.com/?p=269">The weights puzzle</a>

%H Jon E. Schoenfield, <a href="/A201052/a201052.txt">Excel/VBA macro</a>

%e Numbers n and an example of a subset of {1..n} exhibiting the maximum cardinality c=a(n):

%e 1, {1}

%e 2, {1, 2}

%e 3, {1, 2}

%e 4, {1, 2, 4}

%e 5, {1, 2, 4}

%e 6, {1, 2, 4}

%e 7, {3, 5, 6, 7}

%e 8, {1, 2, 4, 8}

%e 9, {1, 2, 4, 8}

%e 10, {1, 2, 4, 8}

%e 11, {1, 2, 4, 8}

%e 12, {1, 2, 4, 8}

%e 13, {3, 6, 11, 12, 13}

%e 14, {1, 6, 10, 12, 14}

%e 15, {1, 6, 10, 12, 14}

%e 16, {1, 2, 4, 8, 16}

%e 17, {1, 2, 4, 8, 16}

%e 18, {1, 2, 4, 8, 16}

%e For examples of maximum-cardinality subsets at values of n where a(n) > a(n-1), see A096858. - _Jon E. Schoenfield_, Nov 28 2013

%p # is any subset of L uniquely determined by its total weight?

%p iswts := proc(L)

%p local wtset,s,c,subL,thiswt ;

%p # the weight sums are to be unique, so sufficient to remember the set

%p wtset := {} ;

%p # loop over all subsets of weights generated by L

%p for s from 1 to nops(L) do

%p c := combinat[choose](L,s) ;

%p for subL in c do

%p # compute the weight sum in this subset

%p thiswt := add(i,i=subL) ;

%p # if this weight sum already appeared: not a candidate

%p if thiswt in wtset then

%p return false;

%p else

%p wtset := wtset union {thiswt} ;

%p end if;

%p end do:

%p end do:

%p # All different subset weights were different: success

%p return true;

%p end proc:

%p # main sequence: given grams 1 to n, determine a subset L

%p # such that each subset of this subset has a different sum.

%p wts := proc(n)

%p local s,c,L ;

%p # select sizes from n (largest size first) down to 1,

%p # so the largest is detected first as required by the puzzle.

%p for s from n to 1 by -1 do

%p # all combinations of subsets of s different grams

%p c := combinat[choose]([seq(i,i=1..n)],s) ;

%p for L in c do

%p # check if any of these meets the requir, print if yes

%p # and return

%p if iswts(L) then

%p print(n,L) ;

%p return nops(L) ;

%p end if;

%p end do:

%p end do:

%p print(n,"-") ;

%p end proc:

%p # loop for weights with maximum n

%p for n from 1 do

%p wts(n) ;

%p end do: # _R. J. Mathar_, Aug 24 2010

%Y Cf. A005318, A096858, A275972, A276661.

%K nonn,nice

%O 1,2

%A _N. J. A. Sloane_, Nov 26 2011

%E More terms from _Alois P. Heinz_, Nov 27 2011

%E More terms from _Jon E. Schoenfield_, Nov 28 2013