login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201045
Number of -n..n arrays of 6 elements with adjacent element differences also in -n..n.
1
239, 4569, 33305, 148433, 491429, 1333683, 3139529, 6641881, 12930475, 23552717, 40627137, 66969449, 106231217, 163051127, 243218865, 353851601, 503583079, 702765313, 963682889, 1300779873, 1730899325, 2273535419, 2951098169
OFFSET
1,1
COMMENTS
Row 6 of A201042.
LINKS
FORMULA
Empirical: a(n) = (2101/120)*n^6 + (2101/40)*n^5 + (1753/24)*n^4 + (1405/24)*n^3 + (569/20)*n^2 + (119/15)*n + 1.
Conjectures from Colin Barker, May 22 2018: (Start)
G.f.: x*(239 + 2896*x + 6341*x^2 + 2882*x^3 + 253*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
.-2...-1....1....3...-1....2...-1...-2....2....2...-2....0....1....0....1...-3
..1...-2....1....1...-2....3....2....0....2....0....1...-2....2....1...-2...-1
.-1...-2...-1....1...-3....3....3...-2....2...-2....0....1....1...-1....1....2
.-3...-3....1....1...-2....2....1...-1....1...-1....1....0....1...-2...-1....0
.-3...-1....3....3...-1....2...-2...-2....0...-2...-1...-3...-1....1...-3...-1
.-2....0....0....1....1....3....1...-1....3...-3...-1...-1....0...-1....0...-1
CROSSREFS
Cf. A201042.
Sequence in context: A256377 A201194 A065750 * A056095 A224261 A223917
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 26 2011
STATUS
approved