Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Sep 08 2022 08:46:00
%S 0,15,1485,145530,14260470,1397380545,136929032955,13417647849060,
%T 1314792560174940,128836253249295075,12624638025870742425,
%U 1237085690282083462590,121221773009618308591410,11878496669252312158495605,1163971451813716973223977895
%N Triangular numbers, T(m), that are three-halves of another triangular number; T(m) such that 2*T(m) = 3*T(k) for some k.
%C For n > 1, a(n) = 98*a(n-1) - a(n-2) + 15. In general, for m>0, let b(n) be those triangular numbers such that for some triangular number c(n), (m+1)*b(n) = m*c(n). Then b(0) = 0, b(1) = A014105(m) and for n > 1, b(n) = 2*A069129(m+1)*b(n-1) - b(n-2) + A014105(m). Further, c(0) = 0, c(1) = A000384(m+1) and for n>1, c(n) = 2*A069129(m+1)*c(n-1) - c(n-2) + A000384(m+1).
%H Colin Barker, <a href="/A200994/b200994.txt">Table of n, a(n) for n = 0..500</a>
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (I).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_1.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (II).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_2.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (III).
%H Editors, L'Intermédiaire des Mathématiciens, <a href="/A072256/a072256_3.pdf">Query 4500: The equation x(x+1)/2 = y*(y+1)/3</a>, L'Intermédiaire des Mathématiciens, 22 (1915), 255-260 (IV).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (99,-99,1).
%F From _Colin Barker_, Mar 02 2016: (Start)
%F a(n) = 99*a(n-1) - 99*a(n-2) + a(n-3) for n>2.
%F G.f.: 15*x / ((1-x)*(1-98*x+x^2)). (End)
%F a(n) = (-10+(5-2*sqrt(6))*(49+20*sqrt(6))^(-n)+(5+2*sqrt(6))*(49+20*sqrt(6))^n)/64. - _Colin Barker_, Mar 03 2016
%e 2*0 = 3*0.
%e 2*15 = 3*10.
%e 2*1485 = 3*990.
%e 2*145530 = 3*97020.
%t LinearRecurrence[{99, -99, 1}, {0, 15, 1485}, 20] (* _T. D. Noe_, Feb 15 2012 *)
%o (PARI) concat(0, Vec(15*x/((1-x)*(1-98*x+x^2)) + O(x^20))) \\ _Colin Barker_, Mar 02 2016
%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(15*x/((1-x)*(1-98*x+x^2)))); // _G. C. Greubel_, Jul 15 2018
%Y Cf. A001652, A029549, A053141, A075528, A200993-A201008.
%Y See also A352181, A352182.
%K nonn,easy
%O 0,2
%A _Charlie Marion_, Feb 15 2012